コード例 #1
0
ファイル: __init__.py プロジェクト: shmily12gz/KungFu
def request_model(peer_ranks, variables, mode, peer_selection_strategy):
    import tensorflow as tf
    var_shapes = [var.shape for var in variables]

    var_sizes = [var.shape.num_elements() for var in variables]

    # Remove self rank from the list
    peer_ranks.remove(current_rank())

    if mode == 'async':
        print("Request a model asynchronously.")
        request_model = _op_lib.async_request_model(
            variables,
            self_rank=current_rank(),
            ranks=peer_ranks,
            var_type_size=variables[0].dtype.size,
            var_sizes=var_sizes,
            shapes=var_shapes,
            peer_selection_strategy=peer_selection_strategy)
    elif mode == 'sync':
        print("Request a model synchronously.")
        request_model = _op_lib.request_model(
            variables,
            self_rank=current_rank(),
            ranks=peer_ranks,
            var_type_size=variables[0].dtype.size,
            var_sizes=var_sizes,
            shapes=var_shapes,
            peer_selection_strategy=peer_selection_strategy)
    else:
        raise Exception("Invalid type of model request mode")

    return request_model
コード例 #2
0
ファイル: __init__.py プロジェクト: shmily12gz/KungFu
def model_averaging(peer_ranks, variables, mode, peer_selection_strategy):
    import tensorflow as tf
    var_sizes = [var.shape.num_elements() for var in variables]

    # Remove self rank from the list
    peer_ranks.remove(current_rank())

    if mode == 'async':
        print(
            "Applying model averaging with a model requested asynchronously.")
        model_averaging = _op_lib.async_model_averaging(
            variables,
            self_rank=current_rank(),
            ranks=peer_ranks,
            var_type_size=variables[0].dtype.size,
            var_sizes=var_sizes,
            peer_selection_strategy=peer_selection_strategy)
    elif mode == 'sync':
        print("Applying model averaging with a model requested synchronously.")
        model_averaging = _op_lib.model_averaging(
            variables,
            self_rank=current_rank(),
            ranks=peer_ranks,
            var_type_size=variables[0].dtype.size,
            var_sizes=var_sizes,
            peer_selection_strategy=peer_selection_strategy)
    else:
        raise Exception("Invalid type of model request mode.")

    return model_averaging
コード例 #3
0
def get_neighbour_mask(edges):
    """Compute a bool vector of neighbours for the current peer.

    For the peer of rank i, v[j] = true if (i, j) is an edge of the MST,
    otherwise v[j] = false.
    """
    return _op_lib.kungfu_get_neighbour_mask(
        edges, self_rank=current_rank(), cluster_size=current_cluster_size())