コード例 #1
0
    n_objectives = 2
    directions = ["minimize"] * n_objectives

    sampler_name = sys.argv[1]

    # Sampler.
    sampler_cls = getattr(
        optuna.samplers,
        sampler_name,
        getattr(optuna.integration, sampler_name, None),
    )
    if sampler_cls is None:
        raise ValueError("Unknown sampler: {}.".format(sampler_name))

    sampler_kwargs = json.loads(sys.argv[2])
    sampler = sampler_cls(**sampler_kwargs)

    return optuna.create_study(
        directions=directions,
        sampler=sampler,
        pruner=optuna.pruners.NopPruner(),
    )


if __name__ == "__main__":

    factory = OptunaSolverFactory(create_study)
    runner = solver.SolverRunner(factory)
    runner.run()
コード例 #2
0
ファイル: random_solver.py プロジェクト: optuna/kurobako-py
    def create_solver(self, seed: int, problem: problem.ProblemSpec) -> solver.Solver:
        return RandomSolver(seed, problem)


class RandomSolver(solver.Solver):
    def __init__(self, seed: int, problem: problem.ProblemSpec):
        self._rng = np.random.RandomState(seed)
        self._problem = problem

    def ask(self, idg: solver.TrialIdGenerator) -> solver.NextTrial:
        params: List[Optional[float]] = []
        for p in self._problem.params:
            if p.distribution == problem.Distribution.UNIFORM:
                params.append(self._rng.uniform(p.range.low, p.range.high))
            else:
                low = np.log(p.range.low)
                high = np.log(p.range.high)
                params.append(float(np.exp(self._rng.uniform(low, high))))

        trial_id = idg.generate()
        next_step = self._problem.last_step
        return solver.NextTrial(trial_id, params, next_step)

    def tell(self, trial: solver.EvaluatedTrial):
        pass


if __name__ == "__main__":
    runner = solver.SolverRunner(RandomSolverFactory())
    runner.run()