コード例 #1
0
def pendulum_loss(mx,
                  Sx,
                  target=np.array([np.pi, 0]),
                  angle_dims=[0],
                  pole_length=0.5,
                  cw=[0.25],
                  *args,
                  **kwargs):
    # size of target vector (and mx) after replacing angles with their
    # (sin, cos) representation:
    # [x1,x2,..., angle,...,xn] -> [x1,x2,...,xn, sin(angle), cos(angle)]
    Da = np.array(target).size + len(angle_dims)

    # build cost scaling function
    Q = np.zeros((Da, Da))
    Q[0, 0] = 1
    Q[0, -2] = pole_length
    Q[-2, 0] = pole_length
    Q[-2, -2] = pole_length**2
    Q[-1, -1] = pole_length**2

    return cost.distance_based_cost(mx,
                                    Sx,
                                    target,
                                    Q,
                                    cw,
                                    angle_dims=angle_dims,
                                    *args,
                                    **kwargs)
コード例 #2
0
def double_cartpole_loss(mx,
                         Sx,
                         target=np.array([0, 0, 0, 0, 0, 0]),
                         angle_dims=[4, 5],
                         link1_length=0.5,
                         link2_length=0.5,
                         cw=[0.5],
                         *args,
                         **kwargs):

    # size of target vector (and mx) after replacing angles with their
    # (sin, cos) representation:
    # [x1,x2,..., angle,...,xn] -> [x1,x2,...,xn, sin(angle), cos(angle)]
    Da = np.array(target).size + len(angle_dims)

    # build cost scaling function
    Q = np.zeros((Da, Da))
    # these are the dimensions used to compute the cost
    # (x, sin(theta1), cos(theta1), sin(theta2), cos(theta2))
    cost_dims = np.hstack([0, np.arange(Da - 2 * len(angle_dims), Da)])[:,
                                                                        None]
    C = np.array([[1, -link1_length, 0, -link2_length, 0],
                  [0, 0, link1_length, 0, link2_length]])
    Q[cost_dims, cost_dims.T] = C.T.dot(C)

    return cost.distance_based_cost(mx,
                                    Sx,
                                    target,
                                    Q,
                                    cw,
                                    angle_dims=angle_dims,
                                    *args,
                                    **kwargs)