def test_case2(self): x = variable(2) A = matrix([[2., 1., -1., 0.], [1., 2., 0., -1.]]) b = matrix([3., 3., 0., 0.]) c = matrix([-4., -5.]) ineq = (A * x <= b) lp2 = op(dot(c, x), ineq) lp2.solve() self.assertAlmostEqual(lp2.objective.value()[0], -9.0, places=4)
def test_case3(self): m, n = 500, 100 setseed(100) A = normal(m, n) b = normal(m) x1 = variable(n) lp1 = op(max(abs(A * x1 - b))) lp1.solve() self.assertTrue(lp1.status == 'optimal') x2 = variable(n) lp2 = op(sum(abs(A * x2 - b))) lp2.solve() self.assertTrue(lp2.status == 'optimal') x3 = variable(n) lp3 = op( sum(max(0, abs(A * x3 - b) - 0.75, 2 * abs(A * x3 - b) - 2.25))) lp3.solve() self.assertTrue(lp3.status == 'optimal')
def test_case1(self): x = variable() y = variable() c1 = (2 * x + y <= 3) c2 = (x + 2 * y <= 3) c3 = (x >= 0) c4 = (y >= 0) lp1 = op(-4 * x - 5 * y, [c1, c2, c3, c4]) print(repr(x)) print(str(x)) print(repr(lp1)) print(str(lp1)) lp1.solve() print(repr(x)) print(str(x)) self.assertTrue(lp1.status == 'optimal')
def test_loadfile(self): lp = op() lp.fromfile(os.path.join(os.path.dirname(__file__), "boeing2.mps")) lp.solve() self.assertTrue(lp.status == 'optimal')
# The robust LP example of section 10.5 (Examples). from kvxopt import normal, uniform from kvxopt.modeling import variable, dot, op, sum from kvxopt.blas import nrm2 m, n = 500, 100 A = normal(m, n) b = uniform(m) c = normal(n) x = variable(n) op(dot(c, x), A * x + sum(abs(x)) <= b).solve() x2 = variable(n) y = variable(n) op(dot(c, x2), [A * x2 + sum(y) <= b, -y <= x2, x2 <= y]).solve() print("\nDifference between two solutions %e" % nrm2(x.value - x2.value))
# The small LP of section 10.4 (Optimization problems). from kvxopt import matrix from kvxopt.modeling import variable, op, dot x = variable() y = variable() c1 = ( 2*x+y <= 3 ) c2 = ( x+2*y <= 3 ) c3 = ( x >= 0 ) c4 = ( y >= 0 ) lp1 = op(-4*x-5*y, [c1,c2,c3,c4]) lp1.solve() print("\nstatus: %s" %lp1.status) print("optimal value: %f" %lp1.objective.value()[0]) print("optimal x: %f" %x.value[0]) print("optimal y: %f" %y.value[0]) print("optimal multiplier for 1st constraint: %f" %c1.multiplier.value[0]) print("optimal multiplier for 2nd constraint: %f" %c2.multiplier.value[0]) print("optimal multiplier for 3rd constraint: %f" %c3.multiplier.value[0]) print("optimal multiplier for 4th constraint: %f\n" %c4.multiplier.value[0]) x = variable(2) A = matrix([[2.,1.,-1.,0.], [1.,2.,0.,-1.]]) b = matrix([3.,3.,0.,0.]) c = matrix([-4.,-5.]) ineq = ( A*x <= b ) lp2 = op(dot(c,x), ineq) lp2.solve() print("\nstatus: %s" %lp2.status)
# The norm and penalty approximation problems of section 10.5 (Examples). from kvxopt import normal, setseed from kvxopt.modeling import variable, op, max, sum setseed(0) m, n = 500, 100 A = normal(m,n) b = normal(m) x1 = variable(n) prob1=op(max(abs(A*x1+b))) prob1.solve() x2 = variable(n) prob2=op(sum(abs(A*x2+b))) prob2.solve() x3 = variable(n) prob3=op(sum(max(0, abs(A*x3+b)-0.75, 2*abs(A*x3+b)-2.25))) prob3.solve() try: import pylab except ImportError: pass else: pylab.subplot(311) pylab.hist(list(A*x1.value + b), m//5) pylab.subplot(312) pylab.hist(list(A*x2.value + b), m//5) pylab.subplot(313) pylab.hist(list(A*x3.value + b), m//5)
# The 1-norm support vector classifier of section 10.5 (Examples). from kvxopt import normal, setseed from kvxopt.modeling import variable, op, max, sum from kvxopt.blas import nrm2 m, n = 500, 100 A = normal(m, n) x = variable(A.size[1], 'x') u = variable(A.size[0], 'u') op(sum(abs(x)) + sum(u), [A * x >= 1 - u, u >= 0]).solve() x2 = variable(A.size[1], 'x') op(sum(abs(x2)) + sum(max(0, 1 - A * x2))).solve() print("\nDifference between two solutions: %e" % nrm2(x.value - x2.value))