def main(): name = 'L2L-FunctionGenerator-PT' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, # freeze_input=True, # multiproc=True, # use_scoop=True, # wrap_mode=pypetconstants.WRAP_MODE_LOCAL, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory ## Benchmark function function_id = 14 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) #-------------------------------------------------------------------------- # configure settings for parallel tempering: # for each of the parallel runs chose # a cooling schedule # an upper and lower temperature bound # a decay parameter #-------------------------------------------------------------------------- # specify the number of parallel running schedules. Each following container # has to have an entry for each parallel run n_parallel_runs = 5 # for detailed information on the cooling schedules see either the wiki or # the documentaition in l2l.optimizers.paralleltempering.optimizer cooling_schedules = [ AvailableCoolingSchedules.EXPONENTIAL_ADDAPTIVE, AvailableCoolingSchedules.EXPONENTIAL_ADDAPTIVE, AvailableCoolingSchedules.EXPONENTIAL_ADDAPTIVE, AvailableCoolingSchedules.LINEAR_ADDAPTIVE, AvailableCoolingSchedules.LINEAR_ADDAPTIVE ] # has to be from 1 to 0, first entry hast to be larger than second # represents the starting temperature and the ending temperature temperature_bounds = [[0.8, 0], [0.7, 0], [0.6, 0], [1, 0.1], [0.9, 0.2]] # decay parameter for each schedule. If needed can be different for each # schedule decay_parameters = np.full(n_parallel_runs, 0.99) #-------------------------------------------------------------------------- # end of configuration #-------------------------------------------------------------------------- # Check, if the temperature bounds and decay parameters are reasonable. assert ( ((temperature_bounds.all() <= 1) and (temperature_bounds.all() >= 0)) and (temperature_bounds[:, 0].all() > temperature_bounds[:, 1].all()) ), print("Warning: Temperature bounds are not within specifications.") assert ((decay_parameters.all() <= 1) and (decay_parameters.all() >= 0) ), print("Warning: Decay parameter not within specifications.") ## Outerloop optimizer initialization parameters = ParallelTemperingParameters( n_parallel_runs=n_parallel_runs, noisy_step=.03, n_iteration=1000, stop_criterion=np.Inf, seed=np.random.randint(1e5), cooling_schedules=cooling_schedules, temperature_bounds=temperature_bounds, decay_parameters=decay_parameters) optimizer = ParallelTemperingOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-1, ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
class Experiment(object): def __init__(self, root_dir_path): """ Prepares and starts the l2l simulation. For an example see `L2L/bin/l2l-template.py` :param root_dir_path: str, Path to the results folder. Accepts relative paths. Will check if the folder exists and create if not. """ self.root_dir_path = os.path.abspath(root_dir_path) self.logger = logging.getLogger('bin.l2l') self.paths = None self.env = None self.traj = None self.optimizee = None self.optimizer = None def prepare_experiment(self, **kwargs): """ Prepare the experiment by creating the enviroment and :param kwargs: optional dictionary, contains - name: str, name of the run, Default: L2L-run - trajectory_name: str, name of the trajectory, Default: trajectory - log_stdout: bool, if stdout should be sent to logs, Default:False - jube_parameter: dict, User specified parameter for jube. See notes section for default jube parameter - multiprocessing, bool, enable multiprocessing, Default: False :return traj, trajectory object :return all_jube_params, dict, a dictionary with all parameters for jube given by the user and default ones :notes Default JUBE parameters are: - scheduler: None, - submit_cmd: sbatch, - job_file: job.run, - nodes: 1, - walltime: 01:00:00, - ppn: 1, - cpu_pp: 1, - threads_pp: 4, - mail_mode: ALL, - err_file: stderr, - out_file: stdout, - tasks_per_job: 1, - exec: python3 + self.paths.simulation_path + "run_files/run_optimizee.py" - ready_file: self.paths.root_dir_path + "ready_files/ready_w_" - work_path: self.paths.root_dir_path, - paths_obj: self.paths """ name = kwargs.get('name', 'L2L-run') if not os.path.isdir(self.root_dir_path): os.mkdir(os.path.abspath(self.root_dir_path)) print('Created a folder at {}'.format(self.root_dir_path)) trajectory_name = kwargs.get('trajectory_name', 'trajectory') self.paths = Paths(name, {}, root_dir_path=self.root_dir_path, suffix="-" + trajectory_name) print("All output logs can be found in directory ", self.paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment self.env = Environment( trajectory=trajectory_name, filename=self.paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=kwargs.get('log_stdout', False), # Sends stdout to logs multiprocessing=kwargs.get('multiprocessing', False)) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=self.paths.logs_path) configure_loggers() # Get the trajectory from the environment self.traj = self.env.trajectory # Set JUBE params default_jube_params = { # "scheduler": "None", "submit_cmd": "sbatch", "job_file": "job.run", "nodes": "1", "walltime": "01:00:00", "ppn": "1", "cpu_pp": "1", "threads_pp": "4", "mail_mode": "ALL", "err_file": "stderr", "out_file": "stdout", "tasks_per_job": "1", "exec": "python3 " + os.path.join(self.paths.simulation_path, "run_files/run_optimizee.py"), "ready_file": os.path.join(self.paths.root_dir_path, "ready_files/ready_w_"), "work_path": self.paths.root_dir_path, "paths_obj": self.paths, } # Will contain all jube parameters all_jube_params = {} self.traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Go through the parameter dictionary and add to the trajectory if kwargs.get('jube_parameter'): for k, v in kwargs['jube_parameter'].items(): if k == "exec": val = v + " " + os.path.join(self.paths.simulation_path, "run_files/run_optimizee.py") self.traj.f_add_parameter_to_group("JUBE_params", k, val) all_jube_params[k] = val else: self.traj.f_add_parameter_to_group("JUBE_params", k, v) all_jube_params[k] = v # Default parameter are added if they are not already set by the user for k, v in default_jube_params.items(): if kwargs.get('jube_parameter'): if k not in kwargs.get('jube_parameter').keys(): self.traj.f_add_parameter_to_group("JUBE_params", k, v) else: self.traj.f_add_parameter_to_group("JUBE_params", k, v) all_jube_params[k] = v print('JUBE parameters used: {}'.format(all_jube_params)) return self.traj, all_jube_params def run_experiment(self, optimizer, optimizee, optimizer_parameters=None, optimizee_parameters=None): """ Runs the simulation with all parameter combinations Optimizee and optimizer object are required as well as their parameters as namedtuples. :param optimizee: optimizee object :param optimizee_parameters: Namedtuple, optional, parameters of the optimizee :param optimizer: optimizer object :param optimizer_parameters: Namedtuple, optional, parameters of the optimizer """ self.optimizee = optimizee self.optimizer = optimizer self.optimizer = optimizer self.logger.info("Optimizee parameters: %s", optimizee_parameters) self.logger.info("Optimizer parameters: %s", optimizer_parameters) jube.prepare_optimizee(optimizee, self.paths.simulation_path) # Add post processing self.env.add_postprocessing(optimizer.post_process) # Run the simulation self.env.run(optimizee.simulate) def end_experiment(self, optimizer): """ Ends the experiment and disables the logging :param optimizer: optimizer object :return traj, trajectory object :return path, Path object """ # Outer-loop optimizer end optimizer.end(self.traj) # Finally disable logging and close all log-files self.env.disable_logging() return self.traj, self.paths
def main(): name = "FIT-TEMPS" root_dir_path = os.path.dirname(os.path.abspath(sys.argv[0])) paths = Paths(name, dict(run_num="test"), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, "data.h5") print(traj_file) os.makedirs(paths.output_dir_path, exist_ok=True) print("Trajectory file is: {}".format(traj_file)) trajectories = load_last_trajs( os.path.join(paths.output_dir_path, 'per_gen_trajectories')) if len(trajectories): k = trajectories['generation'] traj = trajectories[k] else: traj = name # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=traj, filename=traj_file, file_title="{} data".format(name), comment="{} data".format(name), add_time=bool(1), automatic_storing=bool(1), log_stdout=bool(0), # Sends stdout to logs multiprocessing=MULTIPROCESSING, ) create_shared_logger_data(logger_names=["bin", "optimizers"], log_levels=["INFO", "INFO"], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # trajectories = load_last_trajs(os.path.join(paths.root_dir_path,'trajectories')) # env.trajectory.individuals[0] = trajectories # Get the trajectory from the environment traj = env.trajectory if len(trajectories) == 0: # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Scheduler parameters # Name of the scheduler # traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers # traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:10:00") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. Relevant even without scheduler. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # The execution command run_filename = os.path.join(paths.root_dir_path, "run_files/run_optimizee.py") command = "python3 {}".format(run_filename) if ON_JEWELS and not USE_MPI: # -N num nodes # -t exec time (mins) # -n num sub-procs command = "srun -t 15 -N 1 -n 4 -c 1 --gres=gpu:1 {}".format( command) elif USE_MPI: command = "MPIEXEC_TIMEOUT={} mpiexec -bind-to socket -np 1 {}".format( 60, command) traj.f_add_parameter_to_group("JUBE_params", "exec", command) # Ready file for a generation traj.f_add_parameter_to_group( "JUBE_params", "ready_file", os.path.join(paths.root_dir_path, "readyfiles/ready_w_")) # Path where the job will be executed traj.f_add_parameter_to_group("JUBE_params", "work_path", paths.root_dir_path) ### Maybe we should pass the Paths object to avoid defining paths here and there traj.f_add_parameter_to_group("JUBE_params", "paths_obj", paths) csv = open('./temperature/temperature-anomaly.csv', 'r') temps = [] years = [] for i, line in enumerate(csv): sp = line.split(',') if sp[0] == 'Global': temps.append(float(sp[3])) years.append(float(sp[2])) if sp[0].startswith('Northern'): break csv.close() traj.f_add_parameter_group("simulation", "Contains JUBE parameters") traj.f_add_parameter_to_group("simulation", 'target', temps) # ms traj.f_add_parameter_to_group("simulation", 'years', years) ## Innerloop simulator optimizee = FitOptimizee(traj, 1234) # Prepare optimizee for jube runs JUBE_runner.prepare_optimizee(optimizee, paths.root_dir_path) _, dict_spec = dict_to_list(optimizee.create_individual(), get_dict_spec=True) # step_size = np.asarray([config.ATTR_STEPS[k] for (k, spec, length) in dict_spec]) fit_weights = [ 1.0, ] # 0.1] num_generations = 5000 population_size = 200 # population_size = 5 # if len(trajectories): # traj.individuals = trajectories_to_individuals( # trajectories, population_size, optimizee) parameters = GeneticAlgorithmParameters( seed=None, popsize=population_size, CXPB=0.5, # probability of mating 2 individuals MUTPB=0.8, # probability of individual to mutate NGEN=num_generations, indpb=0.1, # probability of "gene" to mutate tournsize=population_size, # number of best individuals to mate matepar=0.5, # how much to mix two genes when mating mutpar=1. #2.0/4.0, #standard deviations for normal distribution ) optimizer = GeneticAlgorithmOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=fit_weights, parameters=parameters, optimizee_bounding_func=optimizee.bounding_func, percent_hall_of_fame=0.05, percent_elite=0.5, ) # Add post processing ### guess this is where we want to split results from multiple runs? env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def run_experiment(): name = 'L2L-MNIST-ES' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") trajectory_name = 'small-mnist-full-monty-100-hidden' paths = Paths(name, dict(run_num='test'), root_dir_path=root_dir_path, suffix="-" + trajectory_name) print("All output logs can be found in directory ", paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=trajectory_name, filename=paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory optimizee_seed = 200 optimizee_parameters = MNISTOptimizeeParameters(n_hidden=10, seed=optimizee_seed, use_small_mnist=True) ## Innerloop simulator optimizee = MNISTOptimizee(traj, optimizee_parameters) logger.info("Optimizee parameters: %s", optimizee_parameters) ## Outerloop optimizer initialization optimizer_seed = 1234 optimizer_parameters = EvolutionStrategiesParameters( learning_rate=0.1, noise_std=0.1, mirrored_sampling_enabled=True, fitness_shaping_enabled=True, pop_size=20, n_iteration=2000, stop_criterion=np.Inf, seed=optimizer_seed) logger.info("Optimizer parameters: %s", optimizer_parameters) optimizer = EvolutionStrategiesOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(1., ), parameters=optimizer_parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) # Finally disable logging and close all log-files env.disable_logging() return traj.v_storage_service.filename, traj.v_name, paths
def main(): name = 'L2L-FUN-GA' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation" ) paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) with open("bin/logging.yaml") as f: l_dict = yaml.load(f) log_output_file = os.path.join(paths.results_path, l_dict['handlers']['file']['filename']) l_dict['handlers']['file']['filename'] = log_output_file logging.config.dictConfig(l_dict) print("All output can be found in file ", log_output_file) print("Change the values in logging.yaml to control log level and destination") print("e.g. change the handler to console for the loggers you're interesting in to get output to stdout") traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment(trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs log_folder=os.path.join(paths.output_dir_path, 'logs') ) # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Scheduler parameters # Name of the scheduler # traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:01:00") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. Relevant even without scheduler. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # The execution command traj.f_add_parameter_to_group("JUBE_params", "exec", "mpirun python3 " + root_dir_path + "/run_files/run_optimizee.py") # Ready file for a generation traj.f_add_parameter_to_group("JUBE_params", "ready_file", root_dir_path + "/readyfiles/ready_w_") # Path where the job will be executed traj.f_add_parameter_to_group("JUBE_params", "work_path", root_dir_path) ## Benchmark function function_id = 4 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, root_dir_path) ## Outerloop optimizer initialization parameters = GeneticAlgorithmParameters(seed=0, popsize=50, CXPB=0.5, MUTPB=0.3, NGEN=100, indpb=0.02, tournsize=15, matepar=0.5, mutpar=1 ) optimizer = GeneticAlgorithmOptimizer(traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-0.1,), parameters=parameters) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end() # Finally disable logging and close all log-files env.disable_logging()
def main(): name = "L2L-OMNIGLOT" root_dir_path = os.path.dirname(os.path.abspath(sys.argv[0])) paths = Paths(name, dict(run_num="test"), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, "data.h5") os.makedirs(paths.output_dir_path, exist_ok=True) print("Trajectory file is: {}".format(traj_file)) trajectories = load_last_trajs( os.path.join(paths.output_dir_path, 'per_gen_trajectories')) if len(trajectories): k = trajectories['generation'] traj = trajectories[k] else: traj = name # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=traj, filename=traj_file, file_title="{} data".format(name), comment="{} data".format(name), add_time=bool(1), automatic_storing=bool(1), log_stdout=bool(0), # Sends stdout to logs multiprocessing=MULTIPROCESSING, ) create_shared_logger_data(logger_names=["bin", "optimizers"], log_levels=["INFO", "INFO"], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Scheduler parameters # Name of the scheduler # traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers # traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:01:00") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. Relevant even without scheduler. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # The execution command run_filename = os.path.join(paths.root_dir_path, "run_files", "run_optimizee.py") command = "python3 {}".format(run_filename) if ON_JEWELS and not USE_MPI: # -N num nodes # -t exec time (mins) # -n num sub-procs command = "srun -n 1 -c {} --gres=gpu:1 {}".format(NUM_SIMS, command) elif USE_MPI: # -timeout <seconds> # command = "MPIEXEC_TIMEOUT={} " # "mpiexec -bind-to socket -np 1 {}".format(60*240, command) command = "mpiexec -bind-to socket -np 1 {}".format(command) traj.f_add_parameter_to_group("JUBE_params", "exec", command) # Ready file for a generation traj.f_add_parameter_to_group( "JUBE_params", "ready_file", os.path.join(paths.root_dir_path, "readyfiles/ready_w_")) # Path where the job will be executed traj.f_add_parameter_to_group("JUBE_params", "work_path", paths.root_dir_path) # Maybe we should pass the Paths object to avoid # defining paths here and there traj.f_add_parameter_to_group("JUBE_params", "paths_obj", paths) traj.f_add_parameter_group("simulation", "Contains JUBE parameters") traj.f_add_parameter_to_group("simulation", 'num_sims', NUM_SIMS) # ms traj.f_add_parameter_to_group("simulation", 'on_juwels', ON_JEWELS) traj.f_add_parameter_to_group("simulation", 'steps', config.STEPS) # ms traj.f_add_parameter_to_group("simulation", 'duration', config.DURATION) # ms traj.f_add_parameter_to_group("simulation", 'sample_dt', config.SAMPLE_DT) # ms traj.f_add_parameter_to_group( "simulation", # rows, cols 'input_shape', config.INPUT_SHAPE) traj.f_add_parameter_to_group( "simulation", # rows, cols 'input_divs', config.INPUT_DIVS) traj.f_add_parameter_to_group("simulation", 'input_layers', config.N_INPUT_LAYERS) traj.f_add_parameter_to_group("simulation", 'num_classes', config.N_CLASSES) traj.f_add_parameter_to_group("simulation", 'samples_per_class', config.N_SAMPLES) traj.f_add_parameter_to_group("simulation", 'test_per_class', config.N_TEST) traj.f_add_parameter_to_group("simulation", 'num_epochs', config.N_EPOCHS) traj.f_add_parameter_to_group("simulation", 'total_per_class', config.TOTAL_SAMPLES) traj.f_add_parameter_to_group("simulation", 'kernel_width', config.KERNEL_W) traj.f_add_parameter_to_group("simulation", 'kernel_pad', config.PAD) traj.f_add_parameter_to_group("simulation", 'output_size', config.OUTPUT_SIZE) traj.f_add_parameter_to_group("simulation", 'use_gabor', config.USE_GABOR_LAYER) # traj.f_add_parameter_to_group("simulation", # 'expand', config.EXPANSION_RANGE[0]) # traj.f_add_parameter_to_group("simulation", # 'conn_dist', config.CONN_DIST) traj.f_add_parameter_to_group("simulation", 'prob_noise', config.PROB_NOISE_SAMPLE) traj.f_add_parameter_to_group("simulation", 'noisy_spikes_path', paths.root_dir_path) # db_path = '/home/gp283/brainscales-recognition/codebase/images_to_spikes/omniglot/spikes' db_path = os.path.abspath('../omniglot_output_%d' % config.INPUT_SHAPE[0]) traj.f_add_parameter_to_group("simulation", 'spikes_path', db_path) # dbs = [ name for name in os.listdir(db_path) # if os.path.isdir(os.path.join(db_path, name)) ] # print(dbs) dbs = [ 'Mkhedruli_-Georgian-', 'Tagalog', 'Ojibwe_-Canadian_Aboriginal_Syllabics-', 'Asomtavruli_-Georgian-', 'Balinese', 'Japanese_-katakana-', 'Malay_-Jawi_-_Arabic-', 'Armenian', 'Burmese_-Myanmar-', 'Arcadian', 'Futurama', 'Cyrillic', 'Alphabet_of_the_Magi', 'Sanskrit', 'Braille', 'Bengali', 'Inuktitut_-Canadian_Aboriginal_Syllabics-', 'Syriac_-Estrangelo-', 'Gujarati', 'Korean', 'Early_Aramaic', 'Japanese_-hiragana-', 'Anglo-Saxon_Futhorc', 'N_Ko', 'Grantha', 'Tifinagh', 'Blackfoot_-Canadian_Aboriginal_Syllabics-', 'Greek', 'Hebrew', 'Latin' ] # dbs = ['Alphabet_of_the_Magi'] # dbs = ['Futurama'] # dbs = ['Latin'] # dbs = ['Braille'] # dbs = ['Blackfoot_-Canadian_Aboriginal_Syllabics-', 'Gujarati', 'Syriac_-Estrangelo-'] dbs = ['Futurama'] #, 'Braille'] # dbs = ['Cyrillic', 'Futurama', 'Braille'] if config.DEBUG: dbs = ['Braille'] #dbs = ['Braille'] traj.f_add_parameter_to_group("simulation", 'database', dbs) # Innerloop simulator grad_desc = OPTIMIZER == GRADDESC optimizee = OmniglotOptimizee(traj, 1234, grad_desc) # Prepare optimizee for jube runs JUBE_runner.prepare_optimizee(optimizee, paths.root_dir_path) _, dict_spec = dict_to_list(optimizee.create_individual(), get_dict_spec=True) # step_size = np.asarray( # [config.ATTR_STEPS[k] for (k, spec, length) in dict_spec]) step_size = tuple( [config.ATTR_STEPS[k] for (k, spec, length) in dict_spec]) fit_weights = [ 1.0, ] # 0.1] optimizer_seed = config.SEED if OPTIMIZER == GRADDESC: n_random_steps = 100 n_iteration = 1000 parameters = RMSPropParameters(learning_rate=0.0001, exploration_step_size=step_size, n_random_steps=n_random_steps, momentum_decay=0.5, n_iteration=n_iteration, stop_criterion=np.inf, seed=optimizer_seed) optimizer = GradientDescentOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=fit_weights, parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) elif OPTIMIZER == EVOSTRAT: parameters = EvolutionStrategiesParameters( learning_rate=0.0001, noise_std=step_size, mirrored_sampling_enabled=True, fitness_shaping_enabled=True, pop_size=50, # couples n_iteration=1000, stop_criterion=np.inf, seed=optimizer_seed) optimizer = EvolutionStrategiesOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=fit_weights, parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) else: num_generations = 1000 if ON_JEWELS: nodes = 12 gpus_per_node = 4 population_size = gpus_per_node * nodes else: population_size = 20 #population_size = 5 # population_size = 5 p_hof = 0.2 if population_size < 50 else 0.1 p_bob = 0.2 # last_trajs = load_last_trajs(os.path.join( # paths.output_dir_path, 'per_gen_trajectories')) # last_trajs = load_last_trajs(os.path.join( # paths.root_dir_path, 'trajectories')) # if len(last_trajs): # traj.individuals = trajectories_to_individuals( # last_trajs, population_size, optimizee) attr_steps = [config.ATTR_STEPS[k[0]] for k in dict_spec] parameters = GeneticAlgorithmParameters( seed=optimizer_seed, popsize=population_size, CXPB=0.5, # probability of mating 2 individuals # note: moved from 0.8 to 0.6 mutpb to see if it removes bouncing MUTPB=0.7, # probability of individual to mutate NGEN=num_generations, indpb=0.1, # probability of "gene" to mutate # number of best individuals to mate tournsize=population_size, matepar=0.5, # how much to mix two genes when mating # standard deviations for normal distribution mutpar=attr_steps, ) optimizer = GeneticAlgorithmOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=fit_weights, parameters=parameters, optimizee_bounding_func=optimizee.bounding_func, percent_hall_of_fame=p_hof, percent_elite=p_bob, ) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) # Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def main(): name = 'L2L-FUN-GS' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation" ) paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment(trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Execution command traj.f_add_parameter_to_group("JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) ## Benchmark function function_id = 4 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) ## Outerloop optimizer initialization n_grid_divs_per_axis = 30 parameters = GridSearchParameters(param_grid={ 'coords': (optimizee.bound[0], optimizee.bound[1], n_grid_divs_per_axis) }) optimizer = GridSearchOptimizer(traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-0.1,), parameters=parameters) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def main(): name = 'L2L-FUN-CE' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, freeze_input=True, multiproc=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory function_id = 14 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) ## Outerloop optimizer initialization parameters = CrossEntropyParameters( pop_size=50, rho=0.9, smoothing=0.0, temp_decay=0, n_iteration=160, distribution=NoisyBayesianGaussianMixture( n_components=3, noise_magnitude=1., noise_decay=0.9, weight_concentration_prior=1.5), stop_criterion=np.inf, seed=103) optimizer = CrossEntropyOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-0.1, ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def main(): name = 'L2L-FUN-GA' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) with open("logging.yaml") as f: l_dict = yaml.load(f) log_output_file = os.path.join(paths.results_path, l_dict['handlers']['file']['filename']) l_dict['handlers']['file']['filename'] = log_output_file logging.config.dictConfig(l_dict) print("All output can be found in file ", log_output_file) print( "Change the values in logging.yaml to control log level and destination" ) print( "e.g. change the handler to console for the loggers you're interesting in to get output to stdout" ) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs log_folder=os.path.join(paths.output_dir_path, 'logs')) # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # The execution command traj.f_add_parameter_to_group( "JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) ## Benchmark function function_id = 4 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) ## Outerloop optimizer initialization parameters = GeneticAlgorithmParameters(seed=0, popsize=50, CXPB=0.5, MUTPB=0.3, NGEN=100, indpb=0.02, tournsize=15, matepar=0.5, mutpar=1) optimizer = GeneticAlgorithmOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-0.1, ), parameters=parameters) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end() # Finally disable logging and close all log-files env.disable_logging()
def run_experiment(): name = 'L2L-FUN-ES' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") trajectory_name = 'mirroring-and-fitness-shaping' paths = Paths(name, dict(run_num='test'), root_dir_path=root_dir_path, suffix="-" + trajectory_name) print("All output logs can be found in directory ", paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=trajectory_name, filename=paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") traj.f_add_parameter_to_group( "JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) ## Benchmark function function_id = 14 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 200 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) ## Outerloop optimizer initialization optimizer_seed = 1234 parameters = EvolutionStrategiesParameters(learning_rate=0.1, noise_std=1.0, mirrored_sampling_enabled=True, fitness_shaping_enabled=True, pop_size=20, n_iteration=1000, stop_criterion=np.Inf, seed=optimizer_seed) optimizer = EvolutionStrategiesOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-1., ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging() return traj.v_storage_service.filename, traj.v_name, paths
def main(): # TODO when using the template: Give some *meaningful* name here name = 'L2L' # TODO when using the template: make a path.conf file and write the root path there try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation" ) paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) # Load the logging config which tells us where and what to log (loglevel, destination) print("All output logs can be found in directory ", paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment. This environment is based on the Pypet implementation. # Uncomment 'freeze_input', 'multipproc', 'use_scoop' and 'wrap_mode' lines to disable running the experiment # across cores and nodes. env = Environment(trajectory=name, filename=paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, freeze_input=False, multiproc=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment. traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Execution command traj.f_add_parameter_to_group("JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) # Scheduler parameters # Name of the scheduler traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:01:00") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") ## Innerloop simulator # TODO when using the template: Change the optimizee to the appropriate Optimizee class optimizee = Optimizee(traj) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) ## Outerloop optimizer initialization # TODO when using the template: Change the optimizer to the appropriate Optimizer class # and use the right value for optimizee_fitness_weights. Length is the number of dimensions of fitness, and # negative value implies minimization and vice versa optimizer_parameters = OptimizerParameters() optimizer = Optimizer(traj, optimizee.create_individual, (1.0,), optimizer_parameters) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def run_experiment(): name = 'L2L-MNIST-CE' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError("You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") trajectory_name = 'small-mnist-full-monty' paths = Paths(name, dict(run_num='test'), root_dir_path=root_dir_path, suffix="-" + trajectory_name) print("All output logs can be found in directory ", paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=trajectory_name, filename=paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data( logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Scheduler parameters # Name of the scheduler # traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:01:00") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. Relevant even without scheduler. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # The execution command traj.f_add_parameter_to_group("JUBE_params", "exec", "mpirun python3 " + root_dir_path + "/run_files/run_optimizee.py") # Ready file for a generation traj.f_add_parameter_to_group("JUBE_params", "ready_file", root_dir_path + "/readyfiles/ready_w_") # Path where the job will be executed traj.f_add_parameter_to_group("JUBE_params", "work_path", root_dir_path) optimizee_seed = 200 optimizee_parameters = MNISTOptimizeeParameters(n_hidden=10, seed=optimizee_seed, use_small_mnist=True) ## Innerloop simulator optimizee = MNISTOptimizee(traj, optimizee_parameters) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, root_dir_path) logger.info("Optimizee parameters: %s", optimizee_parameters) ## Outerloop optimizer initialization optimizer_seed = 1234 optimizer_parameters = CrossEntropyParameters(pop_size=40, rho=0.9, smoothing=0.0, temp_decay=0, n_iteration=5000, distribution=NoisyGaussian(noise_magnitude=1., noise_decay=0.99), stop_criterion=np.inf, seed=optimizer_seed) logger.info("Optimizer parameters: %s", optimizer_parameters) optimizer = CrossEntropyOptimizer(traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(1.,), parameters=optimizer_parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging() return traj.v_storage_service.filename, traj.v_name, paths
def main(): name = 'L2L-FunctionGenerator-SA' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, # freeze_input=True, # multiproc=True, # use_scoop=True, # wrap_mode=pypetconstants.WRAP_MODE_LOCAL, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Execution command traj.f_add_parameter_to_group( "JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) ## Benchmark function function_id = 14 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) #Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) ## Outerloop optimizer initialization parameters = SimulatedAnnealingParameters( n_parallel_runs=50, noisy_step=.03, temp_decay=.99, n_iteration=100, stop_criterion=np.Inf, seed=np.random.randint(1e5), cooling_schedule=AvailableCoolingSchedules.QUADRATIC_ADDAPTIVE) optimizer = SimulatedAnnealingOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-1, ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def run_experiment(): name = 'L2L-FUN-ES' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") trajectory_name = 'mirroring-and-fitness-shaping' paths = Paths(name, dict(run_num='test'), root_dir_path=root_dir_path, suffix="-" + trajectory_name) print("All output logs can be found in directory ", paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=trajectory_name, filename=paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Scheduler parameters # Name of the scheduler # traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:01:00") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. Relevant even without scheduler. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # The execution command traj.f_add_parameter_to_group( "JUBE_params", "exec", "python " + os.path.join(paths.root_dir_path, "run_files/run_optimizee.py")) # Ready file for a generation traj.f_add_parameter_to_group( "JUBE_params", "ready_file", os.path.join(paths.root_dir_path, "ready_files/ready_w_")) # Path where the job will be executed traj.f_add_parameter_to_group("JUBE_params", "work_path", paths.root_dir_path) ### Maybe we should pass the Paths object to avoid defining paths here and there traj.f_add_parameter_to_group("JUBE_params", "paths_obj", paths) ## Benchmark function function_id = 14 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 200 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.root_dir_path) ## Outerloop optimizer initialization optimizer_seed = 1234 parameters = EvolutionStrategiesParameters(learning_rate=0.1, noise_std=1.0, mirrored_sampling_enabled=True, fitness_shaping_enabled=True, pop_size=20, n_iteration=1000, stop_criterion=np.Inf, seed=optimizer_seed) optimizer = EvolutionStrategiesOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(-1., ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging() return traj.v_storage_service.filename, traj.v_name, paths
def main(): name = 'L2L-FUN-GD' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, freeze_input=True, multiproc=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Scheduler parameters # Name of the scheduler # traj.f_add_parameter_to_group("JUBE_params", "scheduler", "Slurm") # Command to submit jobs to the schedulers traj.f_add_parameter_to_group("JUBE_params", "submit_cmd", "sbatch") # Template file for the particular scheduler traj.f_add_parameter_to_group("JUBE_params", "job_file", "job.run") # Number of nodes to request for each run traj.f_add_parameter_to_group("JUBE_params", "nodes", "1") # Requested time for the compute resources traj.f_add_parameter_to_group("JUBE_params", "walltime", "00:01:00") # MPI Processes per node traj.f_add_parameter_to_group("JUBE_params", "ppn", "1") # CPU cores per MPI process traj.f_add_parameter_to_group("JUBE_params", "cpu_pp", "1") # Threads per process traj.f_add_parameter_to_group("JUBE_params", "threads_pp", "1") # Type of emails to be sent from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_mode", "ALL") # Email to notify events from the scheduler traj.f_add_parameter_to_group("JUBE_params", "mail_address", "*****@*****.**") # Error file for the job traj.f_add_parameter_to_group("JUBE_params", "err_file", "stderr") # Output file for the job traj.f_add_parameter_to_group("JUBE_params", "out_file", "stdout") # JUBE parameters for multiprocessing. Relevant even without scheduler. # MPI Processes per job traj.f_add_parameter_to_group("JUBE_params", "tasks_per_job", "1") # The execution command traj.f_add_parameter_to_group( "JUBE_params", "exec", "mpirun python3 " + root_dir_path + "/run_files/run_optimizee.py") # Ready file for a generation traj.f_add_parameter_to_group("JUBE_params", "ready_file", root_dir_path + "/readyfiles/ready_w_") # Path where the job will be executed traj.f_add_parameter_to_group("JUBE_params", "work_path", root_dir_path) ## Benchmark function function_id = 4 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) #Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, root_dir_path) ## ## Outerloop optimizer initialization # parameters = ClassicGDParameters(learning_rate=0.01, exploration_step_size=0.01, # n_random_steps=5, n_iteration=100, # stop_criterion=np.Inf) # parameters = AdamParameters(learning_rate=0.01, exploration_step_size=0.01, n_random_steps=5, first_order_decay=0.8, # second_order_decay=0.8, n_iteration=100, stop_criterion=np.Inf) # parameters = StochasticGDParameters(learning_rate=0.01, stochastic_deviation=1, stochastic_decay=0.99, # exploration_step_size=0.01, n_random_steps=5, n_iteration=100, # stop_criterion=np.Inf) parameters = RMSPropParameters(learning_rate=0.01, exploration_step_size=0.01, n_random_steps=5, momentum_decay=0.5, n_iteration=100, stop_criterion=np.Inf, seed=99) optimizer = GradientDescentOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(0.1, ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def main(): name = 'L2L-FUNALL' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation" ) paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') n_iterations = 100 # NOTE: Need to use lambdas here since we want the distributions within CE, FACE etc. optimizers to be reinitialized # afresh each time since it seems like they are stateful. optimizers = [ (CrossEntropyOptimizer, lambda: CrossEntropyParameters(pop_size=50, rho=0.2, smoothing=0.0, temp_decay=0, n_iteration=n_iterations, distribution=NoisyGaussian(noise_decay=0.95, noise_bias=0.05))), (FACEOptimizer, lambda: FACEParameters(min_pop_size=20, max_pop_size=50, n_elite=10, smoothing=0.2, temp_decay=0, n_iteration=n_iterations, distribution=Gaussian(), n_expand=5)), (GradientDescentOptimizer, lambda: RMSPropParameters(learning_rate=0.01, exploration_rate=0.01, n_random_steps=5, momentum_decay=0.5, n_iteration=n_iterations, stop_criterion=np.Inf)), (GradientDescentOptimizer, lambda: ClassicGDParameters(learning_rate=0.01, exploration_rate=0.01, n_random_steps=5, n_iteration=n_iterations, stop_criterion=np.Inf)), (GradientDescentOptimizer, lambda: AdamParameters(learning_rate=0.01, exploration_rate=0.01, n_random_steps=5, first_order_decay=0.8, second_order_decay=0.8, n_iteration=n_iterations, stop_criterion=np.Inf)), (GradientDescentOptimizer, lambda: StochasticGDParameters(learning_rate=0.01, stochastic_deviation=1, stochastic_decay=0.99, exploration_rate=0.01, n_random_steps=5, n_iteration=n_iterations, stop_criterion=np.Inf)) ] # NOTE: Benchmark functions bench_functs = BenchmarkedFunctions() function_ids = range(len(bench_functs.function_name_map)) for function_id, (optimizer_class, optimizer_parameters_fn) in itertools.product(function_ids, optimizers): logger.info("Running benchmark for %s optimizer and function id %d", optimizer_class, function_id) optimizer_parameters = optimizer_parameters_fn() # Create an environment that handles running our simulation # This initializes an environment env = Environment(trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), # freeze_input=True, # multiproc=True, # use_scoop=True, # wrap_mode=pypetconstants.WRAP_MODE_LOCAL, add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee = FunctionGeneratorOptimizee(traj, benchmark_function) optimizee_fitness_weights = -1. # Gradient descent does descent! if optimizer_class == GradientDescentOptimizer: optimizee_fitness_weights = +1. # Grid search optimizer input depends on optimizee! elif optimizer_class == GridSearchOptimizer: optimizer_parameters = GridSearchParameters(param_grid={ 'coords': (optimizee.bound[0], optimizee.bound[1], 30) }) optimizer = optimizer_class(traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(optimizee_fitness_weights,), parameters=optimizer_parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) # NOTE: Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def main(): name = 'L2L-FUN-GD' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") paths = Paths(name, dict(run_no='test'), root_dir_path=root_dir_path) print("All output logs can be found in directory ", paths.logs_path) traj_file = os.path.join(paths.output_dir_path, 'data.h5') # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=name, filename=traj_file, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, freeze_input=True, multiproc=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Execution command traj.f_add_parameter_to_group( "JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) ## Benchmark function function_id = 4 bench_functs = BenchmarkedFunctions() (benchmark_name, benchmark_function), benchmark_parameters = \ bench_functs.get_function_by_index(function_id, noise=True) optimizee_seed = 100 random_state = np.random.RandomState(seed=optimizee_seed) function_tools.plot(benchmark_function, random_state) ## Innerloop simulator optimizee = FunctionGeneratorOptimizee(traj, benchmark_function, seed=optimizee_seed) #Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) ## ## Outerloop optimizer initialization # parameters = ClassicGDParameters(learning_rate=0.01, exploration_step_size=0.01, # n_random_steps=5, n_iteration=100, # stop_criterion=np.Inf) # parameters = AdamParameters(learning_rate=0.01, exploration_step_size=0.01, n_random_steps=5, first_order_decay=0.8, # second_order_decay=0.8, n_iteration=100, stop_criterion=np.Inf) # parameters = StochasticGDParameters(learning_rate=0.01, stochastic_deviation=1, stochastic_decay=0.99, # exploration_step_size=0.01, n_random_steps=5, n_iteration=100, # stop_criterion=np.Inf) parameters = RMSPropParameters(learning_rate=0.01, exploration_step_size=0.01, n_random_steps=5, momentum_decay=0.5, n_iteration=100, stop_criterion=np.Inf, seed=99) optimizer = GradientDescentOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(0.1, ), parameters=parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging()
def run_experiment(): name = 'L2L-MNIST-CE' try: with open('bin/path.conf') as f: root_dir_path = f.read().strip() except FileNotFoundError: raise FileNotFoundError( "You have not set the root path to store your results." " Write the path to a path.conf text file in the bin directory" " before running the simulation") trajectory_name = 'small-mnist-full-monty' paths = Paths(name, dict(run_num='test'), root_dir_path=root_dir_path, suffix="-" + trajectory_name) print("All output logs can be found in directory ", paths.logs_path) # Create an environment that handles running our simulation # This initializes an environment env = Environment( trajectory=trajectory_name, filename=paths.output_dir_path, file_title='{} data'.format(name), comment='{} data'.format(name), add_time=True, automatic_storing=True, log_stdout=False, # Sends stdout to logs ) create_shared_logger_data(logger_names=['bin', 'optimizers'], log_levels=['INFO', 'INFO'], log_to_consoles=[True, True], sim_name=name, log_directory=paths.logs_path) configure_loggers() # Get the trajectory from the environment traj = env.trajectory # Set JUBE params traj.f_add_parameter_group("JUBE_params", "Contains JUBE parameters") # Execution command traj.f_add_parameter_to_group( "JUBE_params", "exec", "python " + os.path.join(paths.simulation_path, "run_files/run_optimizee.py")) # Paths traj.f_add_parameter_to_group("JUBE_params", "paths", paths) optimizee_seed = 200 optimizee_parameters = MNISTOptimizeeParameters(n_hidden=10, seed=optimizee_seed, use_small_mnist=True) ## Innerloop simulator optimizee = MNISTOptimizee(traj, optimizee_parameters) # Prepare optimizee for jube runs jube.prepare_optimizee(optimizee, paths.simulation_path) logger.info("Optimizee parameters: %s", optimizee_parameters) ## Outerloop optimizer initialization optimizer_seed = 1234 optimizer_parameters = CrossEntropyParameters(pop_size=40, rho=0.9, smoothing=0.0, temp_decay=0, n_iteration=5000, distribution=NoisyGaussian( noise_magnitude=1., noise_decay=0.99), stop_criterion=np.inf, seed=optimizer_seed) logger.info("Optimizer parameters: %s", optimizer_parameters) optimizer = CrossEntropyOptimizer( traj, optimizee_create_individual=optimizee.create_individual, optimizee_fitness_weights=(1., ), parameters=optimizer_parameters, optimizee_bounding_func=optimizee.bounding_func) # Add post processing env.add_postprocessing(optimizer.post_process) # Run the simulation with all parameter combinations env.run(optimizee.simulate) ## Outerloop optimizer end optimizer.end(traj) # Finally disable logging and close all log-files env.disable_logging() return traj.v_storage_service.filename, traj.v_name, paths