def test_train_eval(self): tp = TrainingParam() tp.buffer_size = 100 tp.minibatch_size = 8 tp.update_freq = 32 tp.min_observation = 32 tmp_dir = tempfile.mkdtemp() with warnings.catch_warnings(): warnings.filterwarnings("ignore") env = grid2op.make("rte_case5_example", test=True) # neural network architecture li_attr_obs_X = ["prod_p", "load_p", "rho"] li_attr_obs_Tau = ["line_status"] sizes = [100, 50, 10] x_dim = NNParam.get_obs_size(env, li_attr_obs_X) tau_dims = [ NNParam.get_obs_size(env, [el]) for el in li_attr_obs_Tau ] kwargs_archi = { 'sizes': sizes, 'activs': ["relu" for _ in sizes], 'x_dim': x_dim, 'tau_dims': tau_dims, 'tau_adds': [0.0 for _ in range(len(tau_dims))], 'tau_mults': [1.0 for _ in range(len(tau_dims))], "list_attr_obs": li_attr_obs_X, "list_attr_obs_tau": li_attr_obs_Tau } kwargs_converters = { "all_actions": None, "set_line_status": False, "change_bus_vect": True, "set_topo_vect": False } nm_ = "AnneOnymous" train_leap(env, name=nm_, iterations=100, save_path=tmp_dir, load_path=None, logs_dir=tmp_dir, training_param=tp, verbose=False, kwargs_converters=kwargs_converters, kwargs_archi=kwargs_archi) baseline_2 = eval_leap(env, name=nm_, load_path=tmp_dir, logs_path=tmp_dir, nb_episode=1, nb_process=1, max_steps=30, verbose=False, save_gif=False)
def test_train_eval(self): if has_SACOld is not None: raise ImportError( f"TestSACOld is not available with error:\n{has_SACOld}") tp = TrainingParam() tp.buffer_size = 100 tp.minibatch_size = 8 tp.update_freq = 32 tp.min_observation = 32 tmp_dir = tempfile.mkdtemp() with warnings.catch_warnings(): warnings.filterwarnings("ignore") env = grid2op.make("rte_case5_example", test=True) li_attr_obs_X = ["prod_p", "load_p", "rho"] # neural network architecture observation_size = NNParam.get_obs_size(env, li_attr_obs_X) sizes_q = [100, 50, 10] # sizes of each hidden layers sizes_v = [100, 100] # sizes of each hidden layers sizes_pol = [100, 10] # sizes of each hidden layers kwargs_archi = { 'observation_size': observation_size, 'sizes': sizes_q, 'activs': ["relu" for _ in range(len(sizes_q))], "list_attr_obs": li_attr_obs_X, "sizes_value": sizes_v, "activs_value": ["relu" for _ in range(len(sizes_v))], "sizes_policy": sizes_pol, "activs_policy": ["relu" for _ in range(len(sizes_pol))] } kwargs_converters = { "all_actions": None, "set_line_status": False, "change_bus_vect": True, "set_topo_vect": False } nm_ = "AnneOnymous" train_sacold(env, name=nm_, iterations=100, save_path=tmp_dir, load_path=None, logs_dir=tmp_dir, training_param=tp, verbose=False, kwargs_converters=kwargs_converters, kwargs_archi=kwargs_archi) baseline_2 = eval_sacold(env, name=nm_, load_path=tmp_dir, logs_path=tmp_dir, nb_episode=1, nb_process=1, max_steps=30, verbose=False, save_gif=False)
def test_train_eval(self): tp = TrainingParam() tp.buffer_size = 100 tp.minibatch_size = 8 tp.update_freq = 32 tmp_dir = tempfile.mkdtemp() with warnings.catch_warnings(): warnings.filterwarnings("ignore") env = grid2op.make("rte_case5_example", test=True) li_attr_obs_X = [ "day_of_week", "hour_of_day", "minute_of_hour", "prod_p", "prod_v", "load_p", "load_q", "actual_dispatch", "target_dispatch", "topo_vect", "time_before_cooldown_line", "time_before_cooldown_sub", "rho", "timestep_overflow", "line_status" ] # neural network architecture observation_size = NNParam.get_obs_size(env, li_attr_obs_X) sizes = [100, 50, 10] # sizes of each hidden layers kwargs_archi = { 'observation_size': observation_size, 'sizes': sizes, 'activs': ["relu" for _ in sizes], # all relu activation function "list_attr_obs": li_attr_obs_X } kwargs_converters = { "all_actions": None, "set_line_status": False, "change_bus_vect": True, "set_topo_vect": False } nm_ = "AnneOnymous" train_d3qn(env, name=nm_, iterations=100, save_path=tmp_dir, load_path=None, logs_dir=tmp_dir, nb_env=1, training_param=tp, verbose=False, kwargs_converters=kwargs_converters, kwargs_archi=kwargs_archi) baseline_2 = eval_d3qn(env, name=nm_, load_path=tmp_dir, logs_path=tmp_dir, nb_episode=1, nb_process=1, max_steps=30, verbose=False, save_gif=False)
def test_train_eval_multiprocess(self): # test only done for this baselines because the feature is coded in base class in DeepQAgent tp = TrainingParam() tp.buffer_size = 100 tp.minibatch_size = 8 tp.update_freq = 32 tp.min_observation = 32 tmp_dir = tempfile.mkdtemp() with warnings.catch_warnings(): warnings.filterwarnings("ignore") env_init = grid2op.make("rte_case5_example", test=True) env = make_multi_env(env_init=env_init, nb_env=2) li_attr_obs_X = ["prod_p", "load_p", "rho"] # neural network architecture observation_size = NNParam.get_obs_size(env, li_attr_obs_X) sizes = [100, 50, 10] # sizes of each hidden layers kwargs_archi = { 'observation_size': observation_size, 'sizes': sizes, 'activs': ["relu" for _ in sizes], # all relu activation function "list_attr_obs": li_attr_obs_X } kwargs_converters = { "all_actions": None, "set_line_status": False, "change_bus_vect": True, "set_topo_vect": False } nm_ = "AnneOnymous" train_dqn(env, name=nm_, iterations=100, save_path=tmp_dir, load_path=None, logs_dir=tmp_dir, training_param=tp, verbose=False, kwargs_converters=kwargs_converters, kwargs_archi=kwargs_archi) baseline_2 = eval_dqn(env_init, name=nm_, load_path=tmp_dir, logs_path=tmp_dir, nb_episode=1, nb_process=1, max_steps=30, verbose=False, save_gif=False)