コード例 #1
0
def w():
    # In this module, weights are always required.
    return B.rand(10, 2) + 1e-2
コード例 #2
0
ファイル: test_model.py プロジェクト: Zhanghq8/gpar
def test_update_inputs():
    graph = Graph()
    f = GP(EQ(), graph=graph)

    x = array([[1], [2], [3]])
    y = array([[4], [5], [6]])
    res = B.concat([x, y], axis=1)
    x_ind = array([[6], [7]])
    res_ind = array([[6, 0], [7, 0]])

    # Check vanilla case.
    gpar = GPAR(x_ind=x_ind)
    yield allclose, gpar._update_inputs(x, x_ind, y, f, None), (res, res_ind)

    # Check imputation with prior.
    gpar = GPAR(impute=True, x_ind=x_ind)
    this_y = y.clone()
    this_y[1] = np.nan
    this_res = res.clone()
    this_res[1, 1] = 0
    yield allclose, \
          gpar._update_inputs(x, x_ind, this_y, f, None), \
          (this_res, res_ind)

    # Check replacing with prior.
    gpar = GPAR(replace=True, x_ind=x_ind)
    this_y = y.clone()
    this_y[1] = np.nan
    this_res = res.clone()
    this_res[0, 1] = 0
    this_res[1, 1] = np.nan
    this_res[2, 1] = 0
    yield allclose, \
          gpar._update_inputs(x, x_ind, this_y, f, None), \
          (this_res, res_ind)

    # Check imputation and replacing with prior.
    gpar = GPAR(impute=True, replace=True, x_ind=x_ind)
    this_res = res.clone()
    this_res[:, 1] = 0
    yield allclose, \
          gpar._update_inputs(x, x_ind, y, f, None), \
          (this_res, res_ind)

    # Construct observations and update result for inducing points.
    obs = Obs(f(array([1, 2, 3, 6, 7])), array([9, 10, 11, 12, 13]))
    res_ind = array([[6, 12], [7, 13]])

    # Check imputation with posterior.
    gpar = GPAR(impute=True, x_ind=x_ind)
    this_y = y.clone()
    this_y[1] = np.nan
    this_res = res.clone()
    this_res[1, 1] = 10
    yield allclose, \
          gpar._update_inputs(x, x_ind, this_y, f, obs), \
          (this_res, res_ind)

    # Check replacing with posterior.
    gpar = GPAR(replace=True, x_ind=x_ind)
    this_y = y.clone()
    this_y[1] = np.nan
    this_res = res.clone()
    this_res[0, 1] = 9
    this_res[1, 1] = np.nan
    this_res[2, 1] = 11
    yield allclose, \
          gpar._update_inputs(x, x_ind, this_y, f, obs), \
          (this_res, res_ind)

    # Check imputation and replacing with posterior.
    gpar = GPAR(impute=True, replace=True, x_ind=x_ind)
    this_res = res.clone()
    this_res[0, 1] = 9
    this_res[1, 1] = 10
    this_res[2, 1] = 11
    yield allclose, \
          gpar._update_inputs(x, x_ind, y, f, obs), \
          (this_res, res_ind)
コード例 #3
0
def test_update_inputs():
    prior = Measure()
    f = GP(EQ(), measure=prior)

    x = np.array([[1], [2], [3]])
    y = np.array([[4], [5], [6]], dtype=float)
    res = B.concat(x, y, axis=1)
    x_ind = np.array([[6], [7]])
    res_ind = np.array([[6, 0], [7, 0]])

    # Check vanilla case.
    gpar = GPAR(x_ind=x_ind)
    approx(gpar._update_inputs(x, x_ind, y, f, None), (res, res_ind))

    # Check imputation with prior.
    gpar = GPAR(impute=True, x_ind=x_ind)
    this_y = y.copy()
    this_y[1] = np.nan
    this_res = res.copy()
    this_res[1, 1] = 0
    approx(gpar._update_inputs(x, x_ind, this_y, f, None), (this_res, res_ind))

    # Check replacing with prior.
    gpar = GPAR(replace=True, x_ind=x_ind)
    this_y = y.copy()
    this_y[1] = np.nan
    this_res = res.copy()
    this_res[0, 1] = 0
    this_res[1, 1] = np.nan
    this_res[2, 1] = 0
    approx(gpar._update_inputs(x, x_ind, this_y, f, None), (this_res, res_ind))

    # Check imputation and replacing with prior.
    gpar = GPAR(impute=True, replace=True, x_ind=x_ind)
    this_res = res.copy()
    this_res[:, 1] = 0
    approx(gpar._update_inputs(x, x_ind, y, f, None), (this_res, res_ind))

    # Construct observations and update result for inducing points.
    obs = Obs(f(np.array([1, 2, 3, 6, 7])), np.array([9, 10, 11, 12, 13]))
    res_ind = np.array([[6, 12], [7, 13]])

    # Check imputation with posterior.
    gpar = GPAR(impute=True, x_ind=x_ind)
    this_y = y.copy()
    this_y[1] = np.nan
    this_res = res.copy()
    this_res[1, 1] = 10
    approx(gpar._update_inputs(x, x_ind, this_y, f, obs), (this_res, res_ind))

    # Check replacing with posterior.
    gpar = GPAR(replace=True, x_ind=x_ind)
    this_y = y.copy()
    this_y[1] = np.nan
    this_res = res.copy()
    this_res[0, 1] = 9
    this_res[1, 1] = np.nan
    this_res[2, 1] = 11
    approx(gpar._update_inputs(x, x_ind, this_y, f, obs), (this_res, res_ind))

    # Check imputation and replacing with posterior.
    gpar = GPAR(impute=True, replace=True, x_ind=x_ind)
    this_res = res.copy()
    this_res[0, 1] = 9
    this_res[1, 1] = 10
    this_res[2, 1] = 11
    approx(gpar._update_inputs(x, x_ind, y, f, obs), (this_res, res_ind))
コード例 #4
0
def x(request):
    # In this module, weights are always rank-two tensors.
    d = request.param
    return B.randn(10, d)
コード例 #5
0
ファイル: test_regression.py プロジェクト: 321HG/gpar
def test_log_transform():
    x = B.rand(5)
    f, f_inv = log_transform
    approx(f(f_inv(x)), x)
コード例 #6
0
ファイル: test_regression.py プロジェクト: 321HG/gpar
def test_squishing_transform():
    x = B.randn(5)
    f, f_inv = squishing_transform
    approx(f(f_inv(x)), x)
コード例 #7
0
ファイル: test_regression.py プロジェクト: 321HG/gpar
def w(request):
    use_w = request.param
    if use_w:
        return B.rand(10, 2) + 1
    else:
        return None
コード例 #8
0
ファイル: regression.py プロジェクト: C-H-Simpson/gpar
from varz import Vars
from varz.torch import minimise_l_bfgs_b
from wbml.out import Counter

from .model import GPAR, per_output

__all__ = ['GPARRegressor', 'log_transform', 'squishing_transform']

log = logging.getLogger(__name__)
_dispatch = Dispatcher()

#: Log transform for the data.
log_transform = (B.log, B.exp)

#: Squishing transform for the data.
squishing_transform = (lambda x: B.sign(x) * B.log(1 + B.abs(x)),
                       lambda x: B.sign(x) * (B.exp(B.abs(x)) - 1))


def _vector_from_init(init, length):
    # If only a single value is given, create ones.
    if np.size(init) == 1:
        return init * np.ones(length)

    # Multiple values are given. Check that enough values are available.
    init_squeezed = np.squeeze(init)
    if np.ndim(init_squeezed) != 1:
        raise ValueError('Incorrect shape {} of hyperparameters.'
                         ''.format(np.shape(init)))
    if np.size(init_squeezed) < length:  # Squeezed doesn't change size.
        raise ValueError('Not enough hyperparameters specified.')
コード例 #9
0
ファイル: regression.py プロジェクト: wesselb/gpar
    def sample(self,
               x,
               w=None,
               p=None,
               posterior=False,
               num_samples=1,
               latent=False):
        """Sample from the prior or posterior.

        Args:
            x (matrix): Inputs to sample at.
            w (matrix, optional): Weights of inputs to sample at.
            p (int, optional): Number of outputs to sample if sampling from
                the prior.
            posterior (bool, optional): Sample from the prior instead of the
                posterior.
            num_samples (int, optional): Number of samples. Defaults to `1`.
            latent (int, optional): Sample the latent function instead of
                observations. Defaults to `False`.

        Returns:
            list[tensor]: Prior samples. If only a single sample is
                generated, it will be returned directly instead of in a list.
        """
        x = B.uprank(_to_torch(x))

        # Check that model is conditioned or fit if sampling from the posterior.
        if posterior and not self.is_conditioned:
            raise RuntimeError(
                "Must condition or fit model before sampling from the posterior."
            )
        # Check that the number of outputs is specified if sampling from the
        # prior.
        elif not posterior and p is None:
            raise ValueError("Must specify number of outputs to sample.")

        # Initialise weights.
        if w is None:
            w = B.ones(torch.float64,
                       B.shape(x)[0], self.p if posterior else p)
        else:
            w = B.uprank(_to_torch(w))

        if posterior:
            # Construct posterior GPAR.
            gpar = _construct_gpar(self, self.vs, self.m, self.p)
            gpar = gpar | (self.x, self.y, self.w)
        else:
            # Construct prior GPAR.
            gpar = _construct_gpar(self, self.vs, B.shape(x)[1], p)

        # Construct function to undo normalisation and transformation.
        def undo_transforms(y_):
            return self._untransform_y(self._unnormalise_y(y_))

        # Perform sampling.
        samples = []
        with Counter(name="Sampling", total=num_samples) as counter:
            for _ in range(num_samples):
                counter.count()
                samples.append(
                    undo_transforms(gpar.sample(
                        x, w, latent=latent)).detach_().numpy())
        return samples[0] if num_samples == 1 else samples
コード例 #10
0
ファイル: test_regression.py プロジェクト: 321HG/gpar
def x(request):
    shape = request.param
    return B.randn(*shape)
コード例 #11
0
ファイル: regression.py プロジェクト: wesselb/gpar
 def unnormalise_y(y_):
     return B.add(B.multiply(y_, stds), means)
コード例 #12
0
ファイル: regression.py プロジェクト: wesselb/gpar
 def normalise_y(y_):
     return B.divide(B.subtract(y_, means), stds)
コード例 #13
0
ファイル: regression.py プロジェクト: wesselb/gpar
    def __init__(
            self,
            replace=False,
            impute=True,
            scale=1.0,
            scale_tie=False,
            per=False,
            per_period=1.0,
            per_scale=1.0,
            per_decay=10.0,
            input_linear=False,
            input_linear_scale=100.0,
            linear=True,
            linear_scale=100.0,
            nonlinear=False,
            nonlinear_scale=1.0,
            rq=False,
            markov=None,
            noise=0.1,
            x_ind=None,
            normalise_y=True,
            transform_y=(lambda x: x, lambda x: x),
    ):
        # Model configuration.
        self.replace = replace
        self.impute = impute
        self.sparse = x_ind is not None
        if x_ind is None:
            self.x_ind = None
        else:
            self.x_ind = B.uprank(_to_torch(x_ind))
        self.model_config = {
            "scale": scale,
            "scale_tie": scale_tie,
            "per": per,
            "per_period": per_period,
            "per_scale": per_scale,
            "per_decay": per_decay,
            "input_linear": input_linear,
            "input_linear_scale": input_linear_scale,
            "linear": linear,
            "linear_scale": linear_scale,
            "nonlinear": nonlinear,
            "nonlinear_scale": nonlinear_scale,
            "rq": rq,
            "markov": markov,
            "noise": noise,
        }

        # Model fitting.
        self.vs = Vars(dtype=torch.float64)
        self.is_conditioned = False
        self.x = None  # Inputs of training data
        self.y = None  # Outputs of training data
        self.w = None  # Weights for every time stamp
        self.n = None  # Number of data points
        self.m = None  # Number of input features
        self.p = None  # Number of outputs

        # Output normalisation and transformation.
        self.normalise_y = normalise_y
        self._unnormalise_y, self._normalise_y = lambda x: x, lambda x: x
        self._transform_y, self._untransform_y = transform_y
コード例 #14
0
from wbml.out import Counter

from .model import GPAR, per_output

__all__ = ["GPARRegressor", "log_transform", "squishing_transform"]

log = logging.getLogger(__name__)

_dispatch = Dispatcher()

#: Log transform for the data.
log_transform = (B.log, B.exp)

#: Squishing transform for the data.
squishing_transform = (
    lambda x: B.sign(x) * B.log(B.add(1, B.abs(x))),
    lambda x: B.sign(x) * B.subtract(B.exp(B.abs(x)), 1),
)


def _vector_from_init(init, length):
    # If only a single value is given, create ones.
    if np.size(init) == 1:
        return init * np.ones(length)

    # Multiple values are given. Check that enough values are available.
    init_squeezed = np.squeeze(init)
    if np.ndim(init_squeezed) != 1:
        raise ValueError("Incorrect shape {} of hyperparameters."
                         "".format(np.shape(init)))
    if np.size(init_squeezed) < length:  # Squeezed doesn't change size.
コード例 #15
0
ファイル: test_regression.py プロジェクト: 321HG/gpar
def test_inducing_points_uprank():
    reg = GPARRegressor(x_ind=B.linspace(0, 10, 20))
    assert reg.x_ind is not None
    assert B.rank(reg.x_ind) == 2
コード例 #16
0
def _init_weights(w, y):
    if w is None:
        return B.ones(torch.float64, *B.shape(y))
    else:
        return B.uprank(_to_torch(w))
コード例 #17
0
    def fit(self, x, y, greedy=False, fix=True, **kw_args):
        """Fit the model to data.

        Further takes in keyword arguments for `Varz.minimise_l_bfgs_b`.

        Args:
            x (tensor): Inputs of training data.
            y (tensor): Outputs of training data.
            greedy (bool, optional): Greedily determine the ordering of the
                outputs. Defaults to `False`.
            fix (bool, optional): Fix the parameters of a layer after
                training it. If set to `False`, the likelihood are
                accumulated and all parameters are optimised at every step.
                Defaults to `True`.
        """
        if greedy:
            raise NotImplementedError('Greedy search is not implemented yet.')

        # Store data.
        self.x = torch.tensor(B.uprank(x))
        self.y = torch.tensor(self._transform_y(B.uprank(y)))
        self.n, self.m = self.x.shape
        self.p = self.y.shape[1]

        # Perform normalisation, carefully handling missing values.
        if self.normalise_y:
            means, stds = [], []
            for i in range(self.p):
                # Filter missing observations.
                available = ~B.isnan(self.y[:, i])
                y_i = self.y[available, i]

                # Calculate mean.
                means.append(B.mean(y_i))

                # Calculate std: safely handle the zero case.
                std = B.std(y_i)
                if std > 0:
                    stds.append(std)
                else:
                    stds.append(B.cast(B.dtype(std), 1))

            # Stack into a vector and create normalisers.
            means, stds = B.stack(*means)[None, :], B.stack(*stds)[None, :]

            def normalise_y(y_):
                return (y_ - means) / stds

            def unnormalise_y(y_):
                return y_ * stds + means

            # Save normalisers.
            self._normalise_y = normalise_y
            self._unnormalise_y = unnormalise_y

            # Perform normalisation.
            self.y = normalise_y(self.y)

        # Precompute the results of `per_output`. This can otherwise incur a
        # significant overhead if the number of outputs is large.
        y_cached = {k: list(per_output(self.y, keep=k)) for k in [True, False]}

        # Fit layer by layer.
        #   Note: `_construct_gpar` takes in the *number* of outputs.
        sys.stdout.write('Training conditionals (total: {}):'.format(self.p))
        sys.stdout.flush()
        for pi in range(self.p):
            sys.stdout.write(' {}'.format(pi + 1))
            sys.stdout.flush()

            # If we fix parameters of previous layers, we can precompute the
            # inputs. This speeds up the optimisation massively.
            if fix:
                gpar = _construct_gpar(self, self.vs, self.m, pi + 1)
                fixed_x, fixed_x_ind = gpar.logpdf(self.x,
                                                   y_cached,
                                                   only_last_layer=True,
                                                   outputs=list(range(pi)),
                                                   return_inputs=True)

            def objective(vs):
                gpar = _construct_gpar(self, vs, self.m, pi + 1)
                # If the parameters of the previous layers are fixed, use the
                # precomputed inputs.
                if fix:
                    return -gpar.logpdf(fixed_x,
                                        y_cached,
                                        only_last_layer=True,
                                        outputs=[pi],
                                        x_ind=fixed_x_ind)
                else:
                    return -gpar.logpdf(
                        self.x, y_cached, only_last_layer=False)

            # Determine names to optimise.
            if fix:
                names = ['{}/*'.format(pi)]
            else:
                names = ['{}/*'.format(i) for i in range(pi + 1)]

            # Perform the optimisation.
            minimise_l_bfgs_b(objective, self.vs, names=names, **kw_args)

        # Print newline to end progress bar.
        sys.stdout.write('\n')

        # Store that the model is fit.
        self.is_fit = True