コード例 #1
0
ファイル: es.py プロジェクト: SynthAI/SynthAI
def setup(exp, single_threaded):
    import lab
    lab.undo_logger_setup()
    from . import policies, tf_util

    config = Config(**exp['config'])
    env = lab.make(exp['env_id'])
    sess = make_session(single_threaded=single_threaded)
    policy = getattr(policies, exp['policy']['type'])(env.observation_space,
                                                      env.action_space,
                                                      **exp['policy']['args'])
    tf_util.initialize()

    return config, env, sess, policy
コード例 #2
0
def test_smoke(env_id):
    """Check that environments start up without errors and that we can extract rewards and observations"""
    lab.undo_logger_setup()
    logging.getLogger().setLevel(logging.INFO)

    env = lab.make(env_id)
    if env.metadata.get('configure.required', False):
        if os.environ.get('FORCE_LATEST_INSTITUTE_DOCKER_RUNTIMES'):  # Used to test institute-envs in CI
            configure_with_latest_docker_runtime_tag(env)
        else:
            env.configure(remotes=1)

    env = wrappers.Unvectorize(env)

    env.reset()
    _rollout(env, timestep_limit=60*30) # Check a rollout
コード例 #3
0
def test_nice_vnc_semantics_match(spec, matcher, wrapper):
    # Check that when running over VNC or using the raw environment,
    # semantics match exactly.
    lab.undo_logger_setup()
    logging.getLogger().setLevel(logging.INFO)

    spaces.seed(0)

    vnc_env = spec.make()
    if vnc_env.metadata.get('configure.required', False):
        vnc_env.configure(remotes=1)
    vnc_env = wrapper(vnc_env)
    vnc_env = wrappers.Unvectorize(vnc_env)

    env = lab.make(spec._kwargs['lab_core_id'])

    env.seed(0)
    vnc_env.seed(0)

    # Check that reset observations work
    reset(matcher, env, vnc_env, stage='initial reset')

    # Check a full rollout
    rollout(matcher, env, vnc_env, timestep_limit=50, stage='50 steps')

    # Reset to start a new episode
    reset(matcher, env, vnc_env, stage='reset to new episode')

    # Check that a step into the next episode works
    rollout(matcher,
            env,
            vnc_env,
            timestep_limit=1,
            stage='1 step in new episode')

    # Make sure env can be reseeded
    env.seed(1)
    vnc_env.seed(1)
    reset(matcher, env, vnc_env, 'reseeded reset')
    rollout(matcher, env, vnc_env, timestep_limit=1, stage='reseeded step')
コード例 #4
0
import numpy as np

import lab
from lab import spaces, envs

lab.undo_logger_setup()
import logging
logging.getLogger('lab.core').addHandler(logging.NullHandler())

num_trials = 50

print 'Name & Random policy performance'

names = [
    'CartPole-v0', 'Acrobot-v0', 'MountainCar-v0', 'Reacher-v1',
    'HalfCheetah-v1', 'Hopper-v1', 'Walker2d-v1', 'Ant-v1', 'Humanoid-v1'
]
for env_name in names:
    env = envs.make(env_name)

    returns = []
    for _ in xrange(num_trials):
        env.reset()
        ret = 0.
        for _ in xrange(env.spec.timestep_limit):
            _, r, done, _ = env.step(env.action_space.sample())
            ret += r
            if done: break
        returns.append(ret)

    print '{} & {} \pm {}'.format(env_name, np.mean(returns), np.std(returns))