def simple_net(x): # 3. Define weight and bias variables using tf.Variable W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) # 3. Define weight and bias variables using tf.Variable logits = tf.matmul(x, W) + b y = tf.nn.softmax(logits) return y if __name__ == '__main__': # 1. Load data using lab utils/get brain body data mnist_data = get_mnist_data("./data/", one_hot=True, verbose=True) print("mnist_data: " + str(mnist_data)) # 2. Define appropriate placeholders using tf.placeholder x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) # Create the model y = simple_net(x) # Define loss and optimizer eps = np.finfo("float32").eps loss = tf.reduce_mean(tf.reduce_sum(y_ * -1 * tf.log(y + eps), 1)) # acc=0,66 senza rediction_indices #cross_entropy_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
initial_value=tf.random_normal(shape=[hidden_dim, n_classes]), name='l2_weights') b_2 = tf.Variable(initial_value=tf.zeros(shape=[n_classes]), name='l2_biases') logits = tf.matmul(hidden_1, W_2) + b_2 y = tf.nn.softmax(logits) return y if __name__ == '__main__': # Load MNIST data mnist = get_mnist_data('/tmp/mnist', verbose=True) # Placeholders x = tf.placeholder(dtype=tf.float32, shape=[None, 784]) # input placeholder # Placeholder for targets targets = tf.placeholder(dtype=tf.float32, shape=[None, 10]) # Define model output y = multi_layer_net(x) # Define loss function loss = tf.reduce_mean( -tf.reduce_sum(targets * tf.log(y + EPS), reduction_indices=1))