def render(self, view, renderingSystem): glUseProgram(self.shader) renderingSystem.setCommonUniforms(self.shader, view, lu.Mat4()) lu.setUniform(self.shader, "terrainHeightScale", self.heightScale) lu.setUniform(self.shader, "terrainTextureXyScale", self.textureXyScale) xyNormScale = 1.0 / (vec2(self.imageWidth, self.imageHeight) * self.xyScale) lu.setUniform(self.shader, "xyNormScale", xyNormScale) xyOffset = -(vec2(self.imageWidth, self.imageHeight) + vec2(1.0)) * self.xyScale / 2.0 lu.setUniform(self.shader, "xyOffset", xyOffset) #TODO 1.4: Bind the grass texture to the right texture unit, hint: lu.bindTexture loc = glGetUniformLocation(self.shader, "someTexture") glUniform1i(loc, 0) lu.bindTexture(loc, glGenTextures(1)) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) glLineWidth(1.0) glBindVertexArray(self.vertexArrayObject) glDrawElements(GL_TRIANGLES, len(self.terrainInds), GL_UNSIGNED_INT, None) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glBindVertexArray(0) glUseProgram(0)
def render(self, view, renderingSystem, depthMap): glUseProgram(self.shader) renderingSystem.setCommonUniforms(self.shader, view, lu.Mat4()) lu.setUniform(self.shader, "terrainHeightScale", self.heightScale) lu.setUniform(self.shader, "terrainTextureXyScale", self.textureXyScale) xyNormScale = 1.0 / (vec2(self.imageWidth, self.imageHeight) * self.xyScale) lu.setUniform(self.shader, "xyNormScale", xyNormScale) xyOffset = -(vec2(self.imageWidth, self.imageHeight) + vec2(1.0)) / 2.0 lu.setUniform(self.shader, "xyOffset", xyOffset) lu.setUniform(self.shader, "lightPOVTransform", view.depthMVPTransform) #depthTexture binding for use in terrain frag shader #lu.bindTexture(shadow.TU_depthTexture, depthMap) #lu.setUniform(self.shader, "shadowMapTexture", shadow.TU_depthTexture) #FINISH HERE #TODO 1.4: Bind the grass texture to the right texture unit, hint: lu.bindTexture lu.bindTexture(self.TU_Grass, self.terrainTexId) lu.bindTexture(self.TU_high, self.highTexId) lu.bindTexture(self.TU_road, self.roadTexId) lu.bindTexture(self.TU_steep, self.steepTexId) lu.bindTexture(self.TU_map, self.terrainDataSampleTexId) #bind specs lu.bindTexture(self.TU_spec_grass, self.specGrassTexId) lu.bindTexture(self.TU_spec_high, self.specHighTexId) lu.bindTexture(self.TU_spec_road, self.specRoadTexId) lu.bindTexture(self.TU_spec_steep, self.specSteepTexId) #set uniform specs lu.setUniform(self.shader, "specularGrassTexture", self.TU_spec_grass) lu.setUniform(self.shader, "specularHighTexture", self.TU_spec_high) lu.setUniform(self.shader, "specularRoadTexture", self.TU_spec_road) lu.setUniform(self.shader, "specularSteepTexture", self.TU_spec_steep) # lu.setUniform(self.shader, "terrainTexture", self.TU_Grass) lu.setUniform(self.shader, "highTexture", self.TU_high) lu.setUniform(self.shader, "roadTexture", self.TU_road) lu.setUniform(self.shader, "steepTexture", self.TU_steep) lu.setUniform(self.shader, "terrainDataSample", self.TU_map) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) glLineWidth(1.0) glBindVertexArray(self.vertexArrayObject) glDrawElements(GL_TRIANGLES, len(self.terrainInds), GL_UNSIGNED_INT, None) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glBindVertexArray(0) glUseProgram(0)
def getInfoAt(self, position): # 1. convert x&y to texture scale xyOffset = -vec2(self.imageWidth, self.imageHeight) * self.xyScale / 2.0 imageSpacePos = (vec2(position[0], position[1]) - xyOffset) / self.xyScale; x = max(0, min(self.imageWidth - 1, int(imageSpacePos[0]))) y = max(0, min(self.imageHeight - 1, int(imageSpacePos[1]))) pixelOffset = (y * self.imageWidth + x) * 4 # copy pixel 4 channels imagePixel = self.imageData[pixelOffset:pixelOffset+4] info = TerrainInfo(); info.height = float(imagePixel[0]) * self.heightScale / 255.0; info.material = TerrainInfo.M_Road if imagePixel[2] == 255 else TerrainInfo.M_Rough return info;
def render(self, view, renderingSystem): glUseProgram(self.shader) renderingSystem.setCommonUniforms(self.shader, view, lu.Mat4()) lu.setUniform(self.shader, "terrainHeightScale", self.heightScale) lu.setUniform(self.shader, "terrainTextureXyScale", self.textureXyScale) xyNormScale = 1.0 / (vec2(self.imageWidth, self.imageHeight) * self.xyScale) lu.setUniform(self.shader, "xyNormScale", xyNormScale) xyOffset = -(vec2(self.imageWidth, self.imageHeight) + vec2(1.0)) * self.xyScale / 2.0 lu.setUniform(self.shader, "xyOffset", xyOffset) #TODO 1.4: Bind the grass texture to the right texture unit, hint: lu.bindTexture lu.bindTexture(self.TU_Grass, self.grassTexture) lu.setUniform(self.shader, "grassTexture", self.TU_Grass) # 2.1 # High lu.bindTexture(self.TU_Wall, self.wallTexture) lu.setUniform(self.shader, "wallTexture", self.TU_Wall) # Steep lu.bindTexture(self.TU_Seats, self.seatsTexture) lu.setUniform(self.shader, "seatsTexture", self.TU_Seats) # Road lu.bindTexture(self.TU_Track, self.trackTexture) lu.bindTexture(self.TU_Map, self.mapTexture) lu.setUniform(self.shader, "trackTexture", self.TU_Track) lu.setUniform(self.shader, "mapTexture", self.TU_Map) # Olympics lu.bindTexture(self.TU_Concrete, self.concreteTexture) lu.setUniform(self.shader, "concreteTexture", self.TU_Concrete) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) glLineWidth(1.0) glBindVertexArray(self.vertexArrayObject) glDrawElements(GL_TRIANGLES, len(self.terrainInds), GL_UNSIGNED_INT, None) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glBindVertexArray(0) glUseProgram(0)
def render(self, view, renderingSystem): glUseProgram(self.shader) renderingSystem.setCommonUniforms(self.shader, view, lu.Mat4()) lu.setUniform(self.shader, "terrainHeightScale", self.heightScale) lu.setUniform(self.shader, "terrainTextureXyScale", self.textureXyScale) xyNormScale = 1.0 / (vec2(self.imageWidth, self.imageHeight) * self.xyScale) lu.setUniform(self.shader, "xyNormScale", xyNormScale) xyOffset = -(vec2(self.imageWidth, self.imageHeight) + vec2(1.0)) * self.xyScale / 2.0 lu.setUniform(self.shader, "xyOffset", xyOffset) #TODO 1.4: Bind the grass texture to the right texture unit, hint: lu.bindTexture lu.setUniform(self.shader, "grassTexture", self.TU_Grass) lu.bindTexture(self.TU_Grass, self.grass, None) lu.setUniform(self.shader, "highRockTexture", self.TU_highRock) lu.bindTexture(self.TU_highRock, self.highRock, None) lu.setUniform(self.shader, "lowRockTexture", self.TU_lowRock) lu.bindTexture(self.TU_lowRock, self.lowRock, None) lu.setUniform(self.shader, "pavemenTexture", self.TU_pavement) lu.bindTexture(self.TU_pavement, self.pavement, None) lu.setUniform(self.shader, "terrainMapTexture", self.TU_terrainMap) lu.bindTexture(self.TU_terrainMap, self.terrainMap, None) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) glLineWidth(1.0) glBindVertexArray(self.vertexArrayObject) glDrawElements(GL_TRIANGLES, len(self.terrainInds), GL_UNSIGNED_INT, None) if self.renderWireFrame: glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) glBindVertexArray(0) glUseProgram(0)
def load(self, imageName, renderingSystem): with Image.open(imageName) as im: self.imageWidth = im.size[0] self.imageHeight = im.size[1] self.imageData = im.tobytes("raw", "RGBX" if im.mode == 'RGB' else "RGBA", 0, -1) xyOffset = -vec2(float(self.imageWidth), float( self.imageHeight)) * self.xyScale / 2.0 # Calculate vertex positions terrainVerts = [] for j in range(self.imageHeight): for i in range(self.imageWidth): offset = (j * self.imageWidth + i) * 4 # copy pixel 4 channels imagePixel = self.imageData[offset:offset + 4] # Normalize the red channel from [0,255] to [0.0, 1.0] red = float(imagePixel[0]) / 255.0 xyPos = vec2(i, j) * self.xyScale + xyOffset # TODO 1.1: set the height #zPos = 0.0 zPos = red * self.heightScale # Change from zero for 1.1 pt = vec3(xyPos[0], xyPos[1], zPos) terrainVerts.append(pt) green = imagePixel[1] if green == 255: self.startLocations.append(pt) if green == 128: self.treeLocations.append(pt) if green == 64: self.rockLocations.append(pt) # build vertex normals... terrainNormals = [vec3(0.0, 0.0, 1.0) ] * self.imageWidth * self.imageHeight for j in range(1, self.imageHeight - 1): for i in range(1, self.imageWidth - 1): v = terrainVerts[j * self.imageWidth + i] vxP = terrainVerts[j * self.imageWidth + i - 1] vxN = terrainVerts[j * self.imageWidth + i + 1] dx = vxP - vxN vyP = terrainVerts[(j - 1) * self.imageWidth + i] vyN = terrainVerts[(j + 1) * self.imageWidth + i] dy = vyP - vyN nP = lu.normalize(lu.cross(dx, dy)) vdxyP = terrainVerts[(j - 1) * self.imageWidth + i - 1] vdxyN = terrainVerts[(j + 1) * self.imageWidth + i + 1] dxy = vdxyP - vdxyN vdyxP = terrainVerts[(j - 1) * self.imageWidth + i + 1] vdyxN = terrainVerts[(j + 1) * self.imageWidth + i - 1] dyx = vdyxP - vdyxN nD = lu.normalize(lu.cross(dxy, dyx)) terrainNormals[j * self.imageWidth + i] = lu.normalize(nP + nD) # join verts with quads that is: 2 triangles @ 3 vertices, with one less in each direction. terrainInds = [0] * 2 * 3 * (self.imageWidth - 1) * (self.imageHeight - 1) for j in range(0, self.imageHeight - 1): for i in range(0, self.imageWidth - 1): # Vertex indices to the four corners of the quad. qInds = [ j * self.imageWidth + i, j * self.imageWidth + i + 1, (j + 1) * self.imageWidth + i, (j + 1) * self.imageWidth + i + 1, ] outOffset = 3 * 2 * (j * (self.imageWidth - 1) + i) points = [ terrainVerts[qInds[0]], terrainVerts[qInds[1]], terrainVerts[qInds[2]], terrainVerts[qInds[3]], ] # output first triangle: terrainInds[outOffset + 0] = qInds[0] terrainInds[outOffset + 1] = qInds[1] terrainInds[outOffset + 2] = qInds[2] # second triangle terrainInds[outOffset + 3] = qInds[2] terrainInds[outOffset + 4] = qInds[1] terrainInds[outOffset + 5] = qInds[3] self.terrainInds = terrainInds self.vertexArrayObject = lu.createVertexArrayObject() self.vertexDataBuffer = lu.createAndAddVertexArrayData( self.vertexArrayObject, terrainVerts, 0) self.normalDataBuffer = lu.createAndAddVertexArrayData( self.vertexArrayObject, terrainNormals, 1) self.indexDataBuffer = lu.createAndAddIndexArray( self.vertexArrayObject, terrainInds) #normalDataBuffer = createAndAddVertexArrayData<vec4>(g_particleVao, { vec4(0.0f) }, 1); vertexShader = """ #version 330 in vec3 positionIn; in vec3 normalIn; uniform mat4 modelToClipTransform; uniform mat4 modelToViewTransform; uniform mat3 modelToViewNormalTransform; uniform float terrainHeightScale; uniform float terrainTextureXyScale; uniform vec2 xyNormScale; uniform vec2 xyOffset; //2.2 uniform mat4 worldToViewTransform; // 'out' variables declared in a vertex shader can be accessed in the subsequent stages. // For a fragment shader the variable is interpolated (the type of interpolation can be modified, try placing 'flat' in front here and in the fragment shader!). out VertexData { float v2f_height; vec3 v2f_viewSpacePosition; vec3 v2f_viewSpaceNormal; vec3 v2f_worldSpacePosition; vec3 v2f_worldSpaceNormal; // 2.1 - Steep vec2 v2f_xyNormScale; // 2.1 - Road vec2 v2f_xyOffset; // 2.1 - Road // 2.2 vec3 cameraPosition; vec3 cameraToPointVector; }; void main() { // pass the world-space Z to the fragment shader, as it is used to compute the colour and other things v2f_height = positionIn.z; v2f_worldSpacePosition = positionIn; v2f_viewSpacePosition = (modelToViewTransform * vec4(positionIn, 1.0)).xyz; v2f_viewSpaceNormal = modelToViewNormalTransform * normalIn; v2f_worldSpaceNormal = normalIn; //2.1 - Steep v2f_xyNormScale = xyNormScale; // 2.1 - Road v2f_xyOffset = xyOffset; // 2.1 - Road //2.2 cameraPosition = vec3(worldToViewTransform[3][0],worldToViewTransform[3][1],worldToViewTransform[3][2]); cameraToPointVector = normalize(positionIn - cameraPosition); // gl_Position is a buit-in 'out'-variable that gets passed on to the clipping and rasterization stages (hardware fixed function). // it must be written by the vertex shader in order to produce any drawn geometry. // We transform the position using one matrix multiply from model to clip space. Note the added 1 at the end of the position to make the 3D // coordinate homogeneous. gl_Position = modelToClipTransform * vec4(positionIn, 1.0); } """ fragmentShader = """ // Input from the vertex shader, will contain the interpolated (i.e., area weighted average) vaule out put for each of the three vertex shaders that // produced the vertex data for the triangle this fragmet is part of. in VertexData { float v2f_height; vec3 v2f_viewSpacePosition; vec3 v2f_viewSpaceNormal; vec3 v2f_worldSpacePosition; vec3 v2f_worldSpaceNormal; //2.1 - Steep vec2 v2f_xyNormScale; // 2.1 - Road vec2 v2f_xyOffset; // 2.1 - Road // 2.2 vec3 cameraPosition; vec3 cameraToPointVector; }; uniform float terrainHeightScale; uniform float terrainTextureXyScale; // 1.4 uniform sampler2D grassTexture; // Olympics uniform sampler2D wallTexture; uniform sampler2D seatsTexture; uniform sampler2D trackTexture; uniform sampler2D mapTexture; uniform sampler2D concreteTexture; out vec4 fragmentColor; void main() { vec3 materialColour = vec3(v2f_height/terrainHeightScale); // Default colour vec3 concreteColour = texture(concreteTexture, v2f_worldSpacePosition.xy * terrainTextureXyScale).xyz; materialColour = concreteColour; // 2.1 float slope = dot(v2f_worldSpaceNormal, vec3(v2f_worldSpaceNormal.x, 0.0, v2f_worldSpaceNormal.z)); //Steep float blueChannel = texture(mapTexture, (v2f_worldSpacePosition.xy - v2f_xyOffset) * v2f_xyNormScale).z; //Road // Track Texture if (blueChannel >= 0.9) { vec3 trackColour = texture(trackTexture, v2f_worldSpacePosition.xy * terrainTextureXyScale).xyz; materialColour = trackColour; // Grass texture } else if (v2f_height < 1) { vec3 grassColour = texture(grassTexture, v2f_worldSpacePosition.xy * terrainTextureXyScale).xyz; materialColour = grassColour; // Wall/Banner texture } else if ((v2f_height < 11) && (slope < 0.2)) { vec3 wallColour = texture(wallTexture, v2f_worldSpacePosition.xy * terrainTextureXyScale).xyz; materialColour = wallColour; // Seats } else if (slope < 0.2) { vec3 seatsColour = texture(seatsTexture, v2f_worldSpacePosition.xy * terrainTextureXyScale).xyz; materialColour = seatsColour; } vec3 reflectedLight = computeShading(materialColour, v2f_viewSpacePosition, v2f_viewSpaceNormal, viewSpaceLightPosition, sunLightColour); //fragmentColor = vec4(toSrgb(reflectedLight), 1.0); // before 2.2 //fragmentColor = vec4(toSrgb(vec3(v2f_height/terrainHeightScale)), 1.0); //start?? //2.2 - Fog //fragmentColor = vec4(toSrgb(applyFog(reflectedLight, -v2f_viewSpacePosition.z)), 1.0); // basic fog fragmentColor = vec4(toSrgb(applyFog(reflectedLight, -v2f_viewSpacePosition.z, cameraPosition, cameraToPointVector)), 1.0); } """ # Note how we provide lists of source code strings for the two shader stages. # This is basically the only standard way to 'include' or 'import' code into more than one shader. The variable renderingSystem.commonFragmentShaderCode # contains code that we wish to use in all the fragment shaders, for example code to transform the colour output to srgb. # It is also a nice place to put code to compute lighting and other effects that should be the same accross the terrain and racer for example. self.shader = lu.buildShader([vertexShader], [ "#version 330\n", renderingSystem.commonFragmentShaderCode, fragmentShader ], { "positionIn": 0, "normalIn": 1 }) # TODO 1.4: Load texture and configure the sampler self.grassTexture = ObjModel.loadTexture("grass.png", "data", True) # Olympics self.wallTexture = ObjModel.loadTexture("banner.png", "data", True) self.seatsTexture = ObjModel.loadTexture("seats.png", "data", True) self.trackTexture = ObjModel.loadTexture("track.png", "data", True) self.mapTexture = ObjModel.loadTexture("map.png", "data", False) self.concreteTexture = ObjModel.loadTexture("concrete.jpg", "data", True)
def load(self, imageName, renderingSystem): with Image.open(imageName) as im: self.imageWidth = im.size[0] self.imageHeight = im.size[1] self.imageData = im.tobytes("raw", "RGBX" if im.mode == 'RGB' else "RGBA", 0, -1) xyOffset = -vec2(float(self.imageWidth), float( self.imageHeight)) * self.xyScale / 2.0 # Calculate vertex positions terrainVerts = [] for j in range(self.imageHeight): for i in range(self.imageWidth): offset = (j * self.imageWidth + i) * 4 # copy pixel 4 channels imagePixel = self.imageData[offset:offset + 4] # Normalize the red channel from [0,255] to [0.0, 1.0] red = float(imagePixel[0]) / 255.0 xyPos = vec2(i, j) * self.xyScale + xyOffset # TODO 1.1: set the height zPos = self.heightScale * red pt = vec3(xyPos[0], xyPos[1], zPos) terrainVerts.append(pt) green = imagePixel[1] if green == 255: self.startLocations.append(pt) if green == 128: self.treeLocations.append(pt) if green == 64: self.rockLocations.append(pt) # build vertex normals... terrainNormals = [vec3(0.0, 0.0, 1.0) ] * self.imageWidth * self.imageHeight for j in range(1, self.imageHeight - 1): for i in range(1, self.imageWidth - 1): v = terrainVerts[j * self.imageWidth + i] vxP = terrainVerts[j * self.imageWidth + i - 1] vxN = terrainVerts[j * self.imageWidth + i + 1] dx = vxP - vxN vyP = terrainVerts[(j - 1) * self.imageWidth + i] vyN = terrainVerts[(j + 1) * self.imageWidth + i] dy = vyP - vyN nP = lu.normalize(lu.cross(dx, dy)) vdxyP = terrainVerts[(j - 1) * self.imageWidth + i - 1] vdxyN = terrainVerts[(j + 1) * self.imageWidth + i + 1] dxy = vdxyP - vdxyN vdyxP = terrainVerts[(j - 1) * self.imageWidth + i + 1] vdyxN = terrainVerts[(j + 1) * self.imageWidth + i - 1] dyx = vdyxP - vdyxN nD = lu.normalize(lu.cross(dxy, dyx)) terrainNormals[j * self.imageWidth + i] = lu.normalize(nP + nD) # join verts with quads that is: 2 triangles @ 3 vertices, with one less in each direction. terrainInds = [0] * 2 * 3 * (self.imageWidth - 1) * (self.imageHeight - 1) for j in range(0, self.imageHeight - 1): for i in range(0, self.imageWidth - 1): # Vertex indices to the four corners of the quad. qInds = [ j * self.imageWidth + i, j * self.imageWidth + i + 1, (j + 1) * self.imageWidth + i, (j + 1) * self.imageWidth + i + 1, ] outOffset = 3 * 2 * (j * (self.imageWidth - 1) + i) points = [ terrainVerts[qInds[0]], terrainVerts[qInds[1]], terrainVerts[qInds[2]], terrainVerts[qInds[3]], ] # output first triangle: terrainInds[outOffset + 0] = qInds[0] terrainInds[outOffset + 1] = qInds[1] terrainInds[outOffset + 2] = qInds[2] # second triangle terrainInds[outOffset + 3] = qInds[2] terrainInds[outOffset + 4] = qInds[1] terrainInds[outOffset + 5] = qInds[3] self.terrainInds = terrainInds self.vertexArrayObject = lu.createVertexArrayObject() self.vertexDataBuffer = lu.createAndAddVertexArrayData( self.vertexArrayObject, terrainVerts, 0) self.normalDataBuffer = lu.createAndAddVertexArrayData( self.vertexArrayObject, terrainNormals, 1) self.indexDataBuffer = lu.createAndAddIndexArray( self.vertexArrayObject, terrainInds) #normalDataBuffer = createAndAddVertexArrayData<vec4>(g_particleVao, { vec4(0.0f) }, 1); vertexShader = """ #version 330 in vec3 positionIn; in vec3 normalIn; uniform mat4 worldToViewTransform; uniform mat4 modelToClipTransform; uniform mat4 modelToViewTransform; uniform mat3 modelToViewNormalTransform; uniform mat4 lightPOVTransform; uniform sampler2D terrainDataSampler; uniform float terrainHeightScale; uniform float terrainTextureXyScale; uniform vec2 xyNormScale; uniform vec2 xyOffset; // 'out' variables declared in a vertex shader can be accessed in the subsequent stages. // For a fragment shader the variable is interpolated (the type of interpolation can be modified, try placing 'flat' in front here and in the fragment shader!). out VertexData { float v2f_height; vec3 v2f_viewSpacePosition; vec3 v2f_viewSpaceNormal; vec3 v2f_worldSpacePosition; vec2 normalizedXYcoords; float distance; vec3 viewToVertexPosition; vec3 worldSpaceNormal; vec4 fragPosLightSpace; vec3 cameraPosInWorldSpace; }; void main() { // pass the world-space Z to the fragment shader, as it is used to compute the colour and other things v2f_height = positionIn.z; v2f_worldSpacePosition = positionIn; v2f_viewSpacePosition = (modelToViewTransform * vec4(positionIn, 1.0)).xyz; v2f_viewSpaceNormal = modelToViewNormalTransform * normalIn; worldSpaceNormal = normalIn; normalizedXYcoords = positionIn.xy * xyNormScale + xyOffset; distance = -v2f_viewSpacePosition.z; //first use the worldToViewTransform to get the camera world space coords cameraPosInWorldSpace = vec3(worldToViewTransform[3][0],worldToViewTransform[3][1],worldToViewTransform[3][2]); viewToVertexPosition = normalize(positionIn - cameraPosInWorldSpace); // gl_Position is a buit-in 'out'-variable that gets passed on to the clipping and rasterization stages (hardware fixed function). // it must be written by the vertex shader in order to produce any drawn geometry. // We transform the position using one matrix multiply from model to clip space. Note the added 1 at the end of the position to make the 3D // coordinate homogeneous. fragPosLightSpace = lightPOVTransform * vec4(positionIn, 1.0); gl_Position = modelToClipTransform * vec4(positionIn, 1.0); } """ fragmentShader = """ // Input from the vertex shader, will contain the interpolated (i.e., area weighted average) vaule out put for each of the three vertex shaders that // produced the vertex data for the triangle this fragmet is part of. in VertexData { float v2f_height; vec3 v2f_viewSpacePosition; vec3 v2f_viewSpaceNormal; vec3 v2f_worldSpacePosition; vec2 normalizedXYcoords; float distance; //camera to geometry distance vec3 viewToVertexPosition; vec3 worldSpaceNormal; vec4 fragPosLightSpace; vec3 cameraPosInWorldSpace; }; uniform float terrainHeightScale; uniform float terrainTextureXyScale; uniform sampler2D terrainTexture; uniform sampler2D roadTexture; uniform sampler2D highTexture; uniform sampler2D steepTexture; uniform sampler2D terrainDataSample; // uniform sampler2D specularGrassTexture; uniform sampler2D specularHighTexture; uniform sampler2D specularRoadTexture; uniform sampler2D specularSteepTexture; // out vec4 fragmentColor; void main() { // trying height = 0.7 / steep 0.5 //vec3 materialColour = vec3(v2f_height/terrainHeightScale); // TODO 1.4: Compute the texture coordinates and sample the texture for the grass and use as material colour. vec3 materialDiffuse; vec3 materialSpecular; float steepThreshold = 0.959931; //roughly 55 degrees rad float steepness = acos(dot(normalize(worldSpaceNormal), vec3(0,0,1))); vec3 blueChannel = texture(terrainDataSample, normalizedXYcoords).xyz; float matSpecExp; vec3 reflectedLight; if(blueChannel.b == 1.0) { materialDiffuse = texture(roadTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; materialSpecular = texture(specularRoadTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; reflectedLight = computeShadingDiffuse(materialDiffuse, v2f_viewSpacePosition, v2f_viewSpaceNormal, viewSpaceLightPosition, sunLightColour, fragPosLightSpace); } else if(steepness > steepThreshold) { materialDiffuse = texture(steepTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; materialSpecular = texture(specularSteepTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; reflectedLight = computeShadingDiffuse(materialDiffuse, v2f_viewSpacePosition, v2f_viewSpaceNormal, viewSpaceLightPosition, sunLightColour, fragPosLightSpace); } else if (v2f_height > 55) { materialDiffuse = texture(highTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; materialSpecular = texture(specularHighTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; matSpecExp = 50.0; reflectedLight = computeShadingSpecular(materialDiffuse, materialSpecular, v2f_viewSpacePosition, v2f_viewSpaceNormal, viewSpaceLightPosition, sunLightColour, matSpecExp, fragPosLightSpace); } else { materialDiffuse = texture(terrainTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; materialSpecular = texture(specularGrassTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).xyz; matSpecExp = 150.0; reflectedLight = computeShadingSpecular(materialDiffuse, materialSpecular, v2f_viewSpacePosition, v2f_viewSpaceNormal, viewSpaceLightPosition, sunLightColour, matSpecExp, fragPosLightSpace); } //float depthValue = texture(shadowMapTexture, vec2(v2f_worldSpacePosition.x,v2f_worldSpacePosition.y) * terrainTextureXyScale).r; //fragmentColor = vec4(vec3(depthValue), 1.0); fragmentColor = vec4(toSrgb(applyFog(reflectedLight,distance, cameraPosInWorldSpace, viewToVertexPosition)), 1.0); //fragmentColor = vec4(toSrgb(vec3(v2f_height/terrainHeightScale)), 1.0); } """ # Note how we provide lists of source code strings for the two shader stages. # This is basically the only standard way to 'include' or 'import' code into more than one shader. The variable renderingSystem.commonFragmentShaderCode # contains code that we wish to use in all the fragment shaders, for example code to transform the colour output to srgb. # It is also a nice place to put code to compute lighting and other effects that should be the same accross the terrain and racer for example. self.shader = lu.buildShader([vertexShader], [ "#version 330\n", renderingSystem.commonFragmentShaderCode, fragmentShader ], { "positionIn": 0, "normalIn": 1 }) # TODO 1.4: Load texture and configure the sampler self.terrainTexId = ObjModel.loadTexture("data/grass2.png", "", True) self.highTexId = ObjModel.loadTexture("data/rock 2.png", "", True) self.roadTexId = ObjModel.loadTexture("data/paving 5.png", "", True) self.steepTexId = ObjModel.loadTexture("data/rock 5.png", "", True) self.specGrassTexId = ObjModel.loadTexture("data/grass_specular.png", "", True) self.specHighTexId = ObjModel.loadTexture("data/high_specular.png", "", True) self.specSteepTexId = ObjModel.loadTexture("data/steep_specular.png", "", True) self.specRoadTexId = ObjModel.loadTexture("data/road_specular.png", "", True) self.terrainDataSampleTexId = ObjModel.loadTexture( "data/track_01_128.png", "", False)
def load(self, imageName, renderingSystem): with Image.open(imageName) as im: self.imageWidth = im.size[0] self.imageHeight = im.size[1] self.imageData = im.tobytes("raw", "RGBX" if im.mode == 'RGB' else "RGBA", 0, -1) xyOffset = -vec2(float(self.imageWidth), float( self.imageHeight)) * self.xyScale / 2.0 # Calculate vertex positions terrainVerts = [] for j in range(self.imageHeight): for i in range(self.imageWidth): offset = (j * self.imageWidth + i) * 4 # copy pixel 4 channels imagePixel = self.imageData[offset:offset + 4] # Normalize the red channel from [0,255] to [0.0, 1.0] red = float(imagePixel[0]) / 255.0 xyPos = vec2(i, j) * self.xyScale + xyOffset # TODO 1.1: set the height zPos = self.heightScale * red pt = vec3(xyPos[0], xyPos[1], zPos) terrainVerts.append(pt) green = imagePixel[1] if green == 255: self.startLocations.append(pt) if green == 128: self.treeLocations.append(pt) if green == 64: self.rockLocations.append(pt) # build vertex normals... terrainNormals = [vec3(0.0, 0.0, 1.0) ] * self.imageWidth * self.imageHeight for j in range(1, self.imageHeight - 1): for i in range(1, self.imageWidth - 1): v = terrainVerts[j * self.imageWidth + i] vxP = terrainVerts[j * self.imageWidth + i - 1] vxN = terrainVerts[j * self.imageWidth + i + 1] dx = vxP - vxN vyP = terrainVerts[(j - 1) * self.imageWidth + i] vyN = terrainVerts[(j + 1) * self.imageWidth + i] dy = vyP - vyN nP = lu.normalize(lu.cross(dx, dy)) vdxyP = terrainVerts[(j - 1) * self.imageWidth + i - 1] vdxyN = terrainVerts[(j + 1) * self.imageWidth + i + 1] dxy = vdxyP - vdxyN vdyxP = terrainVerts[(j - 1) * self.imageWidth + i + 1] vdyxN = terrainVerts[(j + 1) * self.imageWidth + i - 1] dyx = vdyxP - vdyxN nD = lu.normalize(lu.cross(dxy, dyx)) terrainNormals[j * self.imageWidth + i] = lu.normalize(nP + nD) # join verts with quads that is: 2 triangles @ 3 vertices, with one less in each direction. terrainInds = [0] * 2 * 3 * (self.imageWidth - 1) * (self.imageHeight - 1) for j in range(0, self.imageHeight - 1): for i in range(0, self.imageWidth - 1): # Vertex indices to the four corners of the quad. qInds = [ j * self.imageWidth + i, j * self.imageWidth + i + 1, (j + 1) * self.imageWidth + i, (j + 1) * self.imageWidth + i + 1, ] outOffset = 3 * 2 * (j * (self.imageWidth - 1) + i) points = [ terrainVerts[qInds[0]], terrainVerts[qInds[1]], terrainVerts[qInds[2]], terrainVerts[qInds[3]], ] # output first triangle: terrainInds[outOffset + 0] = qInds[0] terrainInds[outOffset + 1] = qInds[1] terrainInds[outOffset + 2] = qInds[2] # second triangle terrainInds[outOffset + 3] = qInds[2] terrainInds[outOffset + 4] = qInds[1] terrainInds[outOffset + 5] = qInds[3] self.terrainInds = terrainInds self.vertexArrayObject = lu.createVertexArrayObject() self.vertexDataBuffer = lu.createAndAddVertexArrayData( self.vertexArrayObject, terrainVerts, 0) self.normalDataBuffer = lu.createAndAddVertexArrayData( self.vertexArrayObject, terrainNormals, 1) self.indexDataBuffer = lu.createAndAddIndexArray( self.vertexArrayObject, terrainInds) #normalDataBuffer = createAndAddVertexArrayData<vec4>(g_particleVao, { vec4(0.0f) }, 1); vertexShader = """ #version 330 in vec3 positionIn; in vec3 normalIn; uniform mat4 modelToClipTransform; uniform mat4 modelToViewTransform; uniform mat3 modelToViewNormalTransform; uniform float terrainHeightScale; uniform float terrainTextureXyScale; uniform vec2 xyNormScale; uniform vec2 xyOffset; // 'out' variables declared in a vertex shader can be accessed in the subsequent stages. // For a fragment shader the variable is interpolated (the type of interpolation can be modified, try placing 'flat' in front here and in the fragment shader!). out VertexData { float v2f_height; vec3 v2f_viewSpacePosition; vec3 v2f_viewSpaceNormal; vec3 v2f_worldSpacePosition; }; void main() { // pass the world-space Z to the fragment shader, as it is used to compute the colour and other things v2f_height = positionIn.z; v2f_worldSpacePosition = positionIn; v2f_viewSpacePosition = (modelToViewTransform * vec4(positionIn, 1.0)).xyz; v2f_viewSpaceNormal = modelToViewNormalTransform * normalIn; // gl_Position is a buit-in 'out'-variable that gets passed on to the clipping and rasterization stages (hardware fixed function). // it must be written by the vertex shader in order to produce any drawn geometry. // We transform the position using one matrix multiply from model to clip space. Note the added 1 at the end of the position to make the 3D // coordinate homogeneous. gl_Position = modelToClipTransform * vec4(positionIn, 1.0); } """ fragmentShader = """ // Input from the vertex shader, will contain the interpolated (i.e., area weighted average) vaule out put for each of the three vertex shaders that // produced the vertex data for the triangle this fragmet is part of. in VertexData { float v2f_height; vec3 v2f_viewSpacePosition; vec3 v2f_viewSpaceNormal; vec3 v2f_worldSpacePosition; }; uniform float terrainHeightScale; uniform float terrainTextureXyScale; out vec4 fragmentColor; void main() { vec3 materialColour = vec3(v2f_height/terrainHeightScale); // TODO 1.4: Compute the texture coordinates and sample the texture for the grass and use as material colour. vec3 reflectedLight = computeShading(materialColour, v2f_viewSpacePosition, v2f_viewSpaceNormal, viewSpaceLightPosition, sunLightColour); fragmentColor = vec4(toSrgb(reflectedLight), 1.0); //fragmentColor = vec4(toSrgb(vec3(v2f_height/terrainHeightScale)), 1.0); } """ # Note how we provide lists of source code strings for the two shader stages. # This is basically the only standard way to 'include' or 'import' code into more than one shader. The variable renderingSystem.commonFragmentShaderCode # contains code that we wish to use in all the fragment shaders, for example code to transform the colour output to srgb. # It is also a nice place to put code to compute lighting and other effects that should be the same accross the terrain and racer for example. self.shader = lu.buildShader([vertexShader], [ "#version 330\n", renderingSystem.commonFragmentShaderCode, fragmentShader ], { "positionIn": 0, "normalIn": 1 }) # TODO 1.4: Load texture and configure the sampler ObjModel.loadTexture('grass2.png', 'F:\COSC3000_GC\Project\mega_racer\data', self.imageData) loc = glGetUniformLocation(self.shader, "someTexture") glUniform1i(loc, 0)