def prepare_line(): train_data_names = read_data_names('./train_labels') test_data_names = read_data_names('./test_labels') train_images = read_images('./train_images', data_names=train_data_names) train_labels = read_labels('./train_labels') # train_data_names = read_data_names('./train_labels') test_labels = read_labels('./test_labels') test_images = read_images('./test_images', test_data_names) # test_data_names = read_data_names('./test_labels') for ind, image in enumerate(train_images): print(ind) H, W, C = image.shape lab = train_labels[ind] seg = draw_line(lab, H, W) np.save('./train_lines/{}.npy'.format(ind), seg) for ind, image in enumerate(test_images): print('test {}'.format(ind)) H, W, C = image.shape lab = test_labels[ind] seg = draw_line(lab, H, W) np.save('./test_lines/{}.npy'.format(ind), seg) seg = np.load('./train_labels/1.npy') ln = np.load('./train_lines/1.npy') plt.figure() plot_image(seg, segmap=ln) plt.show()
def prepare_seg(): train_data_names = read_data_names('./train_labels') test_data_names = read_data_names('./test_labels') train_images = read_images('./train_images', data_names=train_data_names) train_labels = read_labels('./train_labels') # train_data_names = read_data_names('./train_labels') test_labels = read_labels('./test_labels') test_images = read_images('./test_images', test_data_names) # test_data_names = read_data_names('./test_labels') for ind, image in enumerate(train_images): H, W, C = image.shape lab = train_labels[ind] seg = draw_seg(lab, H, W) np.save('./train_labels/{}.npy'.format(ind), seg) for ind, image in enumerate(test_images): H, W, C = image.shape lab = test_labels[ind] seg = draw_seg(lab, H, W) np.save('./test_labels/{}.npy'.format(ind), seg)
os.path.join( pred_path, title, 'result_' + title + '_%.2f' % (np.average(w2_errors) * 100) + '.csv')) return result_list if __name__ == '__main__': plt.rcParams["figure.figsize"] = (8, 16) #test랑 record 변환은 메인에서 하지말고 여기서만 하면됨 record_label_location = './record_cr_labels' record_data_location = './record_cr_images' record_data_names = read_data_names(record_label_location) record_labels = read_labels(record_label_location) record_images = read_images(record_data_location, record_data_names) pred_path = './model/TRTEST_ep4278' postprocess_inte(pred_path=pred_path, images=record_images, labels_gt_abs=record_labels, title=None, save_plot=True, method2_on=True, method1_on=False, original_display=True) ###Validation set test_label_location = './test_labels' test_data_location = './test_images'
plt.rcParams["figure.figsize"] = (4, 8) # test_label_location = './test_labels' # test_data_location = './test_images' # test_data_names = read_data_names(test_label_location) # test_labels = read_labels(test_label_location) # test_images = read_images(test_data_location, test_data_names) train_label_location = './train_labels' train_image_location = './train_images' out_path = './plots' train_labels = read_labels(train_label_location) train_data_names = read_data_names(train_label_location) train_images = read_images(train_image_location, train_data_names) count = 0 for ind, image in enumerate(train_images): label = train_labels[ind] plt.figure() #title = 'train_vanila' H, W, C = image.shape gt = label gt_angles, gt_pos = calc_angle_old(gt, (H, W), full=True) _fp = gt.reshape(-1, 2, 2).copy() for pos in gt_pos: dots = np.average(_fp[2 * pos:2 * pos + 2, :, :], axis=0) if True: plt.plot(dots[:, 0], dots[:, 1], 'g')
return cobb_angles, pos else: return cobb_angles from label_io import read_labels, read_images, read_data_names import pandas as pd if __name__ == '__main__': #### Testing demo algorithm data_names_train = read_data_names('./train_labels') labels_now = read_labels('./train_labels') labels_ori = read_labels('./train_labels', title ='labels_original') labels_m = read_labels('./train_labels', title ='labels_m') train_images_location = './train_images' train_images = read_images(train_images_location, data_names=data_names_train) images = read_images('./train_images', data_names_train) # for ind, im in enumerate(images): # lab_m = labels_m[ind] # lab_ori = labels_ori[ind] # # if np.sum(np.abs((lab_m - lab_ori)))>=1: # plt.figure() # plot_image(im, coord_red=lab_ori, coord_gr=lab_m) # plt.show() # #### gt angle gtangle = pd.read_csv('./train_labels/angles.csv', header=None, index_col=None)