コード例 #1
0
ファイル: sp_discrep.py プロジェクト: AmmieQi/ksptrack
"""
Calculate F1 score for ratio of positive pixels in superpixels
"""
save_path = os.path.join(rd.root_dir, 'plots_results', 'sp_thr_f1s.npz')

ratios = [0.25, 0.5, 0.75, 1.0]
res = dict()

# Self-learning
for key in rd.types:
    res[key] = dict()
    for seq in rd.res_dirs_dict_ksp[key][0]:
        f1s = list()

        cfg_ = cfg.load_and_convert(os.path.join(rd.root_dir,
                                seq,
                                'cfg.yml'))

        dset = learning_dataset.LearningDataset(cfg_)
        gt = dset.gt
        sp_gt = dset.make_y_map_true(gt)

        for r in ratios:
            f1 = f1_score(gt.ravel(), (sp_gt >= r).ravel())
            f1s.append(f1)

        res[key][cfg_.ds_dir] = f1s

data = {'res': res, 'ratios': ratios}
np.savez(save_path, **data)
コード例 #2
0
ファイル: pipe_wtp_scores.py プロジェクト: AmmieQi/ksptrack
    splits = utls.splitall(path_)
    return os.path.join(root_dir, *splits[prefix_remove:])

for key in rd.types:
#for key in ['Brain', 'Cochlea', 'Slitlamp']:
    for dir_ in rd.res_dirs_dict_wtp[key]:

        print('Scoring:')
        print(dir_)
        # Get h5 file
        path_ = os.path.join(rd.root_dir,
                             dir_)

        # Get config
        conf = cfg.load_and_convert(os.path.join(path_, 'cfg.yml'))

        conf.precomp_desc_path = adjust_path(rd.root_dir,
                                             conf.precomp_desc_path)

        conf.frameFileNames = [adjust_path(rd.root_dir, f) for f in conf.frameFileNames]

        conf.root_path = rd.root_dir
        conf.dataOutDir = adjust_path(rd.root_dir, conf.dataOutDir)
        l_dataset = learning_dataset.LearningDataset(conf, pos_thr=0.5)
        gt = l_dataset.gt
        file_ = os.path.join(path_,
                             'nn_objectness_g1',
                             'predictions.h5')
        f = h5py.File(file_, 'r')
        a_group_key = list(f.keys())[0]
コード例 #3
0
#dict_ = pickle.load(open('g_for_dict', 'rb'))
#dict_['forward_tracklets']
#dict_['forward_sets']

#paths = utls.tracklet_set_to_sp_path(dict_['forward_tracklets'],
#                                     dict_['forward_sets'],
#                                     iter_=0)

root_dir = os.path.join('/home/laurent.lejeune/medical-labeling/',
                        'Dataset00/results')

#exp_dir = '2018-05-31_09-55-01_exp'
#exp_dir = '2018-05-31_09-55-40_exp'
exp_dir = '2018-05-31_09-56-40_exp'

conf = cfg.load_and_convert(os.path.join(root_dir, exp_dir, 'cfg.yml'))
pksp.main(conf)

#dataset = learning_dataset.LearningDataset(conf)
#labels = dataset.get_labels()

#im = [utls.imread(f) for f in conf.frameFileNames]
#res = np.load(os.path.join(dir_, 'results.npz'))
#list_paths_back = res['list_paths_back']
#list_paths_for = res['list_paths_for']
#seeds = utls.list_paths_to_seeds(list_paths_for,
#                                 list_paths_back)
#seeds += list(set([p.tolist() for p in list_paths_back[-1]]))
#seeds += list(set([p.tolist() for p in list_paths_for[-1]]))
コード例 #4
0
ファイル: make_fig_paths.py プロジェクト: AmmieQi/ksptrack
from matplotlib.backends.backend_agg import FigureCanvasAgg
from scipy.ndimage.measurements import center_of_mass
import copy

"""
Makes plots self
"""

def gray2rgb(im):
    return (color.gray2rgb(im)*255).astype(np.uint8)

file_out = os.path.join(rd.root_dir, 'plots_results')

dir_ = 'Dataset30/results/2018-06-01_14-22-56_for_paths'

conf = cfg.load_and_convert(os.path.join(rd.root_dir, dir_, 'cfg.yml'))

res = np.load(os.path.join(rd.root_dir, dir_, 'results.npz'))
list_paths_back = res['list_paths_back']
list_paths_forw = res['list_paths_for']

color_sps = (0, 0, 255)

ims = []
ksp = []

# Load config
dataset = learning_dataset.LearningDataset(conf)
gt = dataset.gt

# Image
コード例 #5
0
if (not os.path.exists(file_out)):
    print('{} doesnt exist. Creating.'.format(file_out))
    os.mkdir(file_out)

cmap = plt.get_cmap('viridis')

for key in ['Slitlamp']:
    #for key in rd.types: # Types

    # Get first gaze-set of every dataset
    for i in [0]:
        #for i in range(4):
        #My model
        dir_ksp = os.path.join(rd.root_dir, rd.res_dirs_dict_ksp[key][i][0])

        conf = cfg.load_and_convert(os.path.join(dir_ksp, 'cfg.yml'))

        print('Type: {}. Dset: {}'.format(key, conf.ds_dir))

        # Load config
        dataset = learning_dataset.LearningDataset(conf)
        gt = dataset.gt

        exp_dir = '{}_{}'.format(key, i + 1)
        dir_out = os.path.join(file_out, exp_dir)

        if (not os.path.exists(dir_out)):
            print('{} doesnt exist. Creating.'.format(dir_out))
            os.mkdir(dir_out)

        file_ksp = os.path.join(dir_ksp, 'results.npz')