def make_windows(n, kaiser_beta, creighton_beta, tukey_beta, gauss_beta): return { "rectangle": lal.CreateRectangularREAL8Window(n), "Hann": lal.CreateHannREAL8Window(n), "Welch": lal.CreateWelchREAL8Window(n), "Bartlett": lal.CreateBartlettREAL8Window(n), "Parzen": lal.CreateParzenREAL8Window(n), "Papoulis": lal.CreatePapoulisREAL8Window(n), "Hamming": lal.CreateHammingREAL8Window(n), "Kaiser": lal.CreateKaiserREAL8Window(n, kaiser_beta), "Creighton": lal.CreateCreightonREAL8Window(n, creighton_beta), "Tukey": lal.CreateTukeyREAL8Window(n, tukey_beta), "Gauss": lal.CreateGaussREAL8Window(n, gauss_beta) }
def calculate_spectral_correlation(fft_window_len,wtype='hann',window_fraction=None): """ Calculate the two point spectral correlation introduced by windowing the data before transforming to the frequency domain -- valid choices are 'hann' and 'tukey'. The window_fraction parameter only has meaning for wtype='tukey'. """ print "|- Whitening window and spectral correlation..." if wtype == 'hann': window = lal.CreateHannREAL8Window(fft_window_len) elif wtype == 'tukey': window = lal.CreateTukeyREAL8Window(fft_window_len, window_fraction) else: raise ValueError("Can't handle window type %s" % wtype) fft_plan = lal.CreateForwardREAL8FFTPlan(len(window.data.data), 1) return window, lal.REAL8WindowTwoPointSpectralCorrelation(window, fft_plan)
def excess_power2( ts_data, # Time series from magnetic field data psd_segment_length, # Length of each segment in seconds psd_segment_stride, # Separation between 2 consecutive segments in seconds psd_estimation, # Average method window_fraction, # Withening window fraction tile_fap, # Tile false alarm probability threshold in Gaussian noise. station, # Station nchans=None, # Total number of channels band=None, # Channel bandwidth fmin=0, # Lowest frequency of the filter bank. fmax=None, # Highest frequency of the filter bank. max_duration=None, # Maximum duration of the tile wtype='tukey'): # Whitening type, can tukey or hann """ Perform excess-power search analysis on magnetic field data. This method will produce a bunch of time-frequency plots for every tile duration and bandwidth analysed as well as a XML file identifying all the triggers found in the selected data within the user-defined time range. Parameters ---------- ts_data : TimeSeries Time Series from magnetic field data psd_segment_length : float Length of each segment in seconds psd_segment_stride : float Separation between 2 consecutive segments in seconds psd_estimation : string Average method window_fraction : float Withening window fraction tile_fap : float Tile false alarm probability threshold in Gaussian noise. nchans : int Total number of channels band : float Channel bandwidth fmin : float Lowest frequency of the filter bank. fmax : float Highest frequency of the filter bank """ # Determine sampling rate based on extracted time series sample_rate = ts_data.sample_rate # Check if tile maximum frequency is not defined if fmax is None or fmax > sample_rate / 2.: # Set the tile maximum frequency equal to the Nyquist frequency # (i.e. half the sampling rate) fmax = sample_rate / 2.0 # Check whether or not tile bandwidth and channel are defined if band is None and nchans is None: # Exit program with error message exit("Either bandwidth or number of channels must be specified...") else: # Check if tile maximum frequency larger than its minimum frequency assert fmax >= fmin # Define spectral band of data data_band = fmax - fmin # Check whether tile bandwidth or channel is defined if band is not None: # Define number of possible filter bands nchans = int(data_band / band) - 1 elif nchans is not None: # Define filter bandwidth band = data_band / nchans nchans = nchans - 1 # Check if number of channels is superior than unity assert nchans > 1 # Print segment information print '|- Estimating PSD from segments of time', print '%.2f s in length, with %.2f s stride...' % (psd_segment_length, psd_segment_stride) # Convert time series as array of float data = ts_data.astype(numpy.float64) # Define segment length for PSD estimation in sample unit seg_len = int(psd_segment_length * sample_rate) # Define separation between consecutive segments in sample unit seg_stride = int(psd_segment_stride * sample_rate) # Calculate the overall PSD from individual PSD segments fd_psd = psd.welch(data, avg_method=psd_estimation, seg_len=seg_len, seg_stride=seg_stride) # We need this for the SWIG functions... lal_psd = fd_psd.lal() # Plot the power spectral density plot_spectrum(fd_psd) # Create whitening window print "|- Whitening window and spectral correlation..." if wtype == 'hann': window = lal.CreateHannREAL8Window(seg_len) elif wtype == 'tukey': window = lal.CreateTukeyREAL8Window(seg_len, window_fraction) else: raise ValueError("Can't handle window type %s" % wtype) # Create FFT plan fft_plan = lal.CreateForwardREAL8FFTPlan(len(window.data.data), 1) # Perform two point spectral correlation spec_corr = lal.REAL8WindowTwoPointSpectralCorrelation(window, fft_plan) # Initialise filter bank print "|- Create filter..." filter_bank, fdb = [], [] # Loop for each channels for i in range(nchans): channel_flow = fmin + band / 2 + i * band channel_width = band # Create excess power filter lal_filter = lalburst.CreateExcessPowerFilter(channel_flow, channel_width, lal_psd, spec_corr) filter_bank.append(lal_filter) fdb.append(Spectrum.from_lal(lal_filter)) # Calculate the minimum bandwidth min_band = (len(filter_bank[0].data.data) - 1) * filter_bank[0].deltaF / 2 # Plot filter bank plot_bank(fdb) # Convert filter bank from frequency to time domain print "|- Convert all the frequency domain to the time domain..." tdb = [] # Loop for each filter's spectrum for fdt in fdb: zero_padded = numpy.zeros(int((fdt.f0 / fdt.df).value) + len(fdt)) st = int((fdt.f0 / fdt.df).value) zero_padded[st:st + len(fdt)] = numpy.real_if_close(fdt.value) n_freq = int(sample_rate / 2 / fdt.df.value) * 2 tdt = numpy.fft.irfft(zero_padded, n_freq) * math.sqrt(sample_rate) tdt = numpy.roll(tdt, len(tdt) / 2) tdt = TimeSeries(tdt, name="", epoch=fdt.epoch, sample_rate=sample_rate) tdb.append(tdt) # Plot time series filter plot_filters(tdb, fmin, band) # Compute the renormalization for the base filters up to a given bandwidth. mu_sq_dict = {} # Loop through powers of 2 up to number of channels for nc_sum in range(0, int(math.log(nchans, 2))): nc_sum = 2**nc_sum - 1 print "|- Calculating renormalization for resolution level containing %d %fHz channels" % ( nc_sum + 1, min_band) mu_sq = (nc_sum + 1) * numpy.array([ lalburst.ExcessPowerFilterInnerProduct(f, f, spec_corr, None) for f in filter_bank ]) # Uncomment to get all possible frequency renormalizations #for n in xrange(nc_sum, nchans): # channel position index for n in xrange(nc_sum, nchans, nc_sum + 1): # channel position index for k in xrange(0, nc_sum): # channel sum index # FIXME: We've precomputed this, so use it instead mu_sq[n] += 2 * lalburst.ExcessPowerFilterInnerProduct( filter_bank[n - k], filter_bank[n - 1 - k], spec_corr, None) #print mu_sq[nc_sum::nc_sum+1] mu_sq_dict[nc_sum] = mu_sq # Create an event list where all the triggers will be stored event_list = lsctables.New(lsctables.SnglBurstTable, [ 'start_time', 'start_time_ns', 'peak_time', 'peak_time_ns', 'duration', 'bandwidth', 'central_freq', 'chisq_dof', 'confidence', 'snr', 'amplitude', 'channel', 'ifo', 'process_id', 'event_id', 'search', 'stop_time', 'stop_time_ns' ]) # Create repositories to save TF and time series plots os.system('mkdir -p segments/time-frequency') os.system('mkdir -p segments/time-series') # Define time edges t_idx_min, t_idx_max = 0, seg_len while t_idx_max <= len(ts_data): # Define starting and ending time of the segment in seconds start_time = ts_data.start_time + t_idx_min / float( ts_data.sample_rate) end_time = ts_data.start_time + t_idx_max / float(ts_data.sample_rate) print "\n|-- Analyzing block %i to %i (%.2f percent)" % ( start_time, end_time, 100 * float(t_idx_max) / len(ts_data)) # Model a withen time series for the block tmp_ts_data = types.TimeSeries(ts_data[t_idx_min:t_idx_max] * window.data.data, delta_t=1. / ts_data.sample_rate, epoch=start_time) # Save time series in relevant repository segfolder = 'segments/%i-%i' % (start_time, end_time) os.system('mkdir -p ' + segfolder) plot_ts(tmp_ts_data, fname='segments/time-series/%i-%i.png' % (start_time, end_time)) # Convert times series to frequency series fs_data = tmp_ts_data.to_frequencyseries() print "|-- Frequency series data has variance: %s" % fs_data.data.std( )**2 # Whitening (FIXME: Whiten the filters, not the data) fs_data.data /= numpy.sqrt(fd_psd) / numpy.sqrt(2 * fd_psd.delta_f) print "|-- Whitened frequency series data has variance: %s" % fs_data.data.std( )**2 print "|-- Create time-frequency plane for current block" # Return the complex snr, along with its associated normalization of the template, # matched filtered against the data #filter.matched_filter_core(types.FrequencySeries(tmp_filter_bank,delta_f=fd_psd.delta_f), # fs_data,h_norm=1,psd=fd_psd,low_frequency_cutoff=filter_bank[0].f0, # high_frequency_cutoff=filter_bank[0].f0+2*band) print "|-- Filtering all %d channels..." % nchans # Initialise 2D zero array tmp_filter_bank = numpy.zeros(len(fd_psd), dtype=numpy.complex128) # Initialise 2D zero array for time-frequency map tf_map = numpy.zeros((nchans, seg_len), dtype=numpy.complex128) # Loop over all the channels for i in range(nchans): # Reset filter bank series tmp_filter_bank *= 0.0 # Index of starting frequency f1 = int(filter_bank[i].f0 / fd_psd.delta_f) # Index of ending frequency f2 = int((filter_bank[i].f0 + 2 * band) / fd_psd.delta_f) + 1 # (FIXME: Why is there a factor of 2 here?) tmp_filter_bank[f1:f2] = filter_bank[i].data.data * 2 # Define the template to filter the frequency series with template = types.FrequencySeries(tmp_filter_bank, delta_f=fd_psd.delta_f, copy=False) # Create filtered series filtered_series = filter.matched_filter_core( template, fs_data, h_norm=None, psd=None, low_frequency_cutoff=filter_bank[i].f0, high_frequency_cutoff=filter_bank[i].f0 + 2 * band) # Include filtered series in the map tf_map[i, :] = filtered_series[0].numpy() # Plot spectrogram plot_spectrogram(numpy.abs(tf_map).T, tmp_ts_data.delta_t, band, ts_data.sample_rate, start_time, end_time, fname='segments/time-frequency/%i-%i.png' % (start_time, end_time)) # Loop through all summed channels for nc_sum in range(0, int(math.log(nchans, 2)))[::-1]: nc_sum = 2**nc_sum - 1 mu_sq = mu_sq_dict[nc_sum] # Clip the boundaries to remove window corruption clip_samples = int(psd_segment_length * window_fraction * ts_data.sample_rate / 2) # Constructing tile and calculate their energy print "\n|--- Constructing tile with %d summed channels..." % ( nc_sum + 1) # Current bandwidth of the time-frequency map tiles df = band * (nc_sum + 1) dt = 1.0 / (2 * df) # How much each "step" is in the time domain -- under sampling rate us_rate = int(round(dt / ts_data.delta_t)) print "|--- Undersampling rate for this level: %f" % ( ts_data.sample_rate / us_rate) print "|--- Calculating tiles..." # Making independent tiles # because [0:-0] does not give the full array tf_map_temp = tf_map[:,clip_samples:-clip_samples:us_rate] \ if clip_samples > 0 else tf_map[:,::us_rate] tiles = tf_map_temp.copy() # Here's the deal: we're going to keep only the valid output and # it's *always* going to exist in the lowest available indices stride = nc_sum + 1 for i in xrange(tiles.shape[0] / stride): numpy.absolute(tiles[stride * i:stride * (i + 1)].sum(axis=0), tiles[stride * (i + 1) - 1]) tiles = tiles[nc_sum::nc_sum + 1].real**2 / mu_sq[nc_sum::nc_sum + 1].reshape( -1, 1) print "|--- TF-plane is %dx%s samples" % tiles.shape print "|--- Tile energy mean %f, var %f" % (numpy.mean(tiles), numpy.var(tiles)) # Define maximum number of degrees of freedom and check it larger or equal to 2 max_dof = 32 if max_duration == None else 2 * max_duration * df assert max_dof >= 2 # Loop through multiple degrees of freedom for j in [2**l for l in xrange(0, int(math.log(max_dof, 2)))]: # Duration is fixed by the NDOF and bandwidth duration = j * dt print "\n|----- Explore signal duration of %f s..." % duration print "|----- Summing DOF = %d ..." % (2 * j) tlen = tiles.shape[1] - 2 * j + 1 + 1 dof_tiles = numpy.zeros((tiles.shape[0], tlen)) sum_filter = numpy.array([1, 0] * (j - 1) + [1]) for f in range(tiles.shape[0]): # Sum and drop correlate tiles dof_tiles[f] = fftconvolve(tiles[f], sum_filter, 'valid') print "|----- Summed tile energy mean: %f, var %f" % ( numpy.mean(dof_tiles), numpy.var(dof_tiles)) plot_spectrogram( dof_tiles.T, dt, df, ts_data.sample_rate, start_time, end_time, fname='segments/%i-%i/tf_%02ichans_%02idof.png' % (start_time, end_time, nc_sum + 1, 2 * j)) threshold = scipy.stats.chi2.isf(tile_fap, j) print "|------ Threshold for this level: %f" % threshold spant, spanf = dof_tiles.shape[1] * dt, dof_tiles.shape[0] * df print "|------ Processing %.2fx%.2f time-frequency map." % ( spant, spanf) # Since we clip the data, the start time needs to be adjusted accordingly window_offset_epoch = fs_data.epoch + psd_segment_length * window_fraction / 2 window_offset_epoch = LIGOTimeGPS(float(window_offset_epoch)) for i, j in zip(*numpy.where(dof_tiles > threshold)): event = event_list.RowType() # The points are summed forward in time and thus a `summed point' is the # sum of the previous N points. If this point is above threshold, it # corresponds to a tile which spans the previous N points. However, the # 0th point (due to the convolution specifier 'valid') is actually # already a duration from the start time. All of this means, the + # duration and the - duration cancels, and the tile 'start' is, by # definition, the start of the time frequency map if j = 0 # FIXME: I think this needs a + dt/2 to center the tile properly event.set_start(window_offset_epoch + float(j * dt)) event.set_stop(window_offset_epoch + float(j * dt) + duration) event.set_peak(event.get_start() + duration / 2) event.central_freq = filter_bank[ 0].f0 + band / 2 + i * df + 0.5 * df event.duration = duration event.bandwidth = df event.chisq_dof = 2 * duration * df event.snr = math.sqrt(dof_tiles[i, j] / event.chisq_dof - 1) # FIXME: Magic number 0.62 should be determine empircally event.confidence = -lal.LogChisqCCDF( event.snr * 0.62, event.chisq_dof * 0.62) event.amplitude = None event.process_id = None event.event_id = event_list.get_next_id() event_list.append(event) for event in event_list[::-1]: if event.amplitude != None: continue etime_min_idx = float(event.get_start()) - float( fs_data.epoch) etime_min_idx = int(etime_min_idx / tmp_ts_data.delta_t) etime_max_idx = float(event.get_start()) - float( fs_data.epoch) + event.duration etime_max_idx = int(etime_max_idx / tmp_ts_data.delta_t) # (band / 2) to account for sin^2 wings from finest filters flow_idx = int((event.central_freq - event.bandwidth / 2 - (df / 2) - fmin) / df) fhigh_idx = int((event.central_freq + event.bandwidth / 2 + (df / 2) - fmin) / df) # TODO: Check that the undersampling rate is always commensurate # with the indexing: that is to say that # mod(etime_min_idx, us_rate) == 0 always z_j_b = tf_map[flow_idx:fhigh_idx, etime_min_idx:etime_max_idx:us_rate] event.amplitude = 0 print "|------ Total number of events: %d" % len(event_list) t_idx_min += int(seg_len * (1 - window_fraction)) t_idx_max += int(seg_len * (1 - window_fraction)) setname = "MagneticFields" __program__ = 'pyburst_excesspower' start_time = LIGOTimeGPS(int(ts_data.start_time)) end_time = LIGOTimeGPS(int(ts_data.end_time)) inseg = segment(start_time, end_time) xmldoc = ligolw.Document() xmldoc.appendChild(ligolw.LIGO_LW()) ifo = 'H1' #channel_name.split(":")[0] straindict = psd.insert_psd_option_group.__dict__ proc_row = register_to_xmldoc(xmldoc, __program__, straindict, ifos=[ifo], version=git_version.id, cvs_repository=git_version.branch, cvs_entry_time=git_version.date) dt_stride = psd_segment_length sample_rate = ts_data.sample_rate # Amount to overlap successive blocks so as not to lose data window_overlap_samples = window_fraction * sample_rate outseg = inseg.contract(window_fraction * dt_stride / 2) # With a given dt_stride, we cannot process the remainder of this data remainder = math.fmod(abs(outseg), dt_stride * (1 - window_fraction)) # ...so make an accounting of it outseg = segment(outseg[0], outseg[1] - remainder) ss = append_search_summary(xmldoc, proc_row, ifos=(station, ), inseg=inseg, outseg=outseg) for sb in event_list: sb.process_id = proc_row.process_id sb.search = proc_row.program sb.ifo, sb.channel = station, setname xmldoc.childNodes[0].appendChild(event_list) fname = 'excesspower.xml.gz' utils.write_filename(xmldoc, fname, gz=fname.endswith("gz"))
def excess_power( ts_data, # Time series from magnetic field data band=None, # Channel bandwidth channel_name='channel-name', # Channel name fmin=0, # Lowest frequency of the filter bank. fmax=None, # Highest frequency of the filter bank. impulse=False, # Impulse response make_plot=True, # Condition to produce plots max_duration=None, # Maximum duration of the tile nchans=256, # Total number of channels psd_estimation='median-mean', # Average method psd_segment_length=60, # Length of each segment in seconds psd_segment_stride=30, # Separation between 2 consecutive segments in seconds station='station-name', # Station name tile_fap=1e-7, # Tile false alarm probability threshold in Gaussian noise. verbose=True, # Print details window_fraction=0, # Withening window fraction wtype='tukey'): # Whitening type, can tukey or hann ''' Perform excess-power search analysis on magnetic field data. This method will produce a bunch of time-frequency plots for every tile duration and bandwidth analysed as well as a XML file identifying all the triggers found in the selected data within the user-defined time range. Parameters ---------- ts_data : TimeSeries Time Series from magnetic field data psd_segment_length : float Length of each segment in seconds psd_segment_stride : float Separation between 2 consecutive segments in seconds psd_estimation : string Average method window_fraction : float Withening window fraction tile_fap : float Tile false alarm probability threshold in Gaussian noise. nchans : int Total number of channels band : float Channel bandwidth fmin : float Lowest frequency of the filter bank. fmax : float Highest frequency of the filter bank Examples -------- The program can be ran as an executable by using the ``excesspower`` command line as follows:: excesspower --station "mainz01" \\ --start-time "2017-04-15-17-1" \\ --end-time "2017-04-15-18" \\ --rep "/Users/vincent/ASTRO/data/GNOME/GNOMEDrive/gnome/serverdata/" \\ --resample 512 \\ --verbose ''' # Determine sampling rate based on extracted time series sample_rate = ts_data.sample_rate # Check if tile maximum frequency is not defined if fmax is None or fmax > sample_rate / 2.: # Set the tile maximum frequency equal to the Nyquist frequency # (i.e. half the sampling rate) fmax = sample_rate / 2.0 # Check whether or not tile bandwidth and channel are defined if band is None and nchans is None: # Exit program with error message exit("Either bandwidth or number of channels must be specified...") else: # Check if tile maximum frequency larger than its minimum frequency assert fmax >= fmin # Define spectral band of data data_band = fmax - fmin # Check whether tile bandwidth or channel is defined if band is not None: # Define number of possible filter bands nchans = int(data_band / band) elif nchans is not None: # Define filter bandwidth band = data_band / nchans nchans -= 1 # Check if number of channels is superior than unity assert nchans > 1 # Print segment information if verbose: print '|- Estimating PSD from segments of', if verbose: print '%.2f s, with %.2f s stride...' % (psd_segment_length, psd_segment_stride) # Convert time series as array of float data = ts_data.astype(numpy.float64) # Define segment length for PSD estimation in sample unit seg_len = int(psd_segment_length * sample_rate) # Define separation between consecutive segments in sample unit seg_stride = int(psd_segment_stride * sample_rate) # Minimum frequency of detectable signal in a segment delta_f = 1. / psd_segment_length # Calculate PSD length counting the zero frequency element fd_len = fmax / delta_f + 1 # Calculate the overall PSD from individual PSD segments if impulse: # Produce flat data flat_data = numpy.ones(int(fd_len)) * 2. / fd_len # Create PSD frequency series fd_psd = types.FrequencySeries(flat_data, 1. / psd_segment_length, ts_data.start_time) else: # Create overall PSD using Welch's method fd_psd = psd.welch(data, avg_method=psd_estimation, seg_len=seg_len, seg_stride=seg_stride) if make_plot: # Plot the power spectral density plot_spectrum(fd_psd) # We need this for the SWIG functions lal_psd = fd_psd.lal() # Create whitening window if verbose: print "|- Whitening window and spectral correlation..." if wtype == 'hann': window = lal.CreateHannREAL8Window(seg_len) elif wtype == 'tukey': window = lal.CreateTukeyREAL8Window(seg_len, window_fraction) else: raise ValueError("Can't handle window type %s" % wtype) # Create FFT plan fft_plan = lal.CreateForwardREAL8FFTPlan(len(window.data.data), 1) # Perform two point spectral correlation spec_corr = lal.REAL8WindowTwoPointSpectralCorrelation(window, fft_plan) # Determine length of individual filters filter_length = int(2 * band / fd_psd.delta_f) + 1 # Initialise filter bank if verbose: print "|- Create bank of %i filters of %i Hz bandwidth..." % ( nchans, filter_length) # Initialise array to store filter's frequency series and metadata lal_filters = [] # Initialise array to store filter's time series fdb = [] # Loop over the channels for i in range(nchans): # Define central position of the filter freq = fmin + band / 2 + i * band # Create excess power filter lal_filter = lalburst.CreateExcessPowerFilter(freq, band, lal_psd, spec_corr) # Testing spectral correlation on filter #print lalburst.ExcessPowerFilterInnerProduct(lal_filter, lal_filter, spec_corr, None) # Append entire filter structure lal_filters.append(lal_filter) # Append filter's spectrum fdb.append(FrequencySeries.from_lal(lal_filter)) #print fdb[0].frequencies #print fdb[0] if make_plot: # Plot filter bank plot_bank(fdb) # Convert filter bank from frequency to time domain if verbose: print "|- Convert all the frequency domain to the time domain..." tdb = [] # Loop for each filter's spectrum for fdt in fdb: zero_padded = numpy.zeros(int((fdt.f0 / fdt.df).value) + len(fdt)) st = int((fdt.f0 / fdt.df).value) zero_padded[st:st + len(fdt)] = numpy.real_if_close(fdt.value) n_freq = int(sample_rate / 2 / fdt.df.value) * 2 tdt = numpy.fft.irfft(zero_padded, n_freq) * math.sqrt(sample_rate) tdt = numpy.roll(tdt, len(tdt) / 2) tdt = TimeSeries(tdt, name="", epoch=fdt.epoch, sample_rate=sample_rate) tdb.append(tdt) # Plot time series filter plot_filters(tdb, fmin, band) # Computer whitened inner products of input filters with themselves #white_filter_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f, f, spec_corr, None) for f in lal_filters]) # Computer unwhitened inner products of input filters with themselves #unwhite_filter_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f, f, spec_corr, lal_psd) for f in lal_filters]) # Computer whitened filter inner products between input adjacent filters #white_ss_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f1, f2, spec_corr, None) for f1, f2 in zip(lal_filters[:-1], lal_filters[1:])]) # Computer unwhitened filter inner products between input adjacent filters #unwhite_ss_ip = numpy.array([lalburst.ExcessPowerFilterInnerProduct(f1, f2, spec_corr, lal_psd) for f1, f2 in zip(lal_filters[:-1], lal_filters[1:])]) # Check filter's bandwidth is equal to user defined channel bandwidth min_band = (len(lal_filters[0].data.data) - 1) * lal_filters[0].deltaF / 2 assert min_band == band # Create an event list where all the triggers will be stored event_list = lsctables.New(lsctables.SnglBurstTable, [ 'start_time', 'start_time_ns', 'peak_time', 'peak_time_ns', 'duration', 'bandwidth', 'central_freq', 'chisq_dof', 'confidence', 'snr', 'amplitude', 'channel', 'ifo', 'process_id', 'event_id', 'search', 'stop_time', 'stop_time_ns' ]) # Create repositories to save TF and time series plots os.system('mkdir -p segments/time-frequency') os.system('mkdir -p segments/time-series') # Define time edges t_idx_min, t_idx_max = 0, seg_len # Loop over each segment while t_idx_max <= len(ts_data): # Define first and last timestamps of the block start_time = ts_data.start_time + t_idx_min / float( ts_data.sample_rate) end_time = ts_data.start_time + t_idx_max / float(ts_data.sample_rate) if verbose: print "\n|- Analyzing block %i to %i (%.2f percent)" % ( start_time, end_time, 100 * float(t_idx_max) / len(ts_data)) # Debug for impulse response if impulse: for i in range(t_idx_min, t_idx_max): ts_data[i] = 1000. if i == (t_idx_max + t_idx_min) / 2 else 0. # Model a withen time series for the block tmp_ts_data = types.TimeSeries(ts_data[t_idx_min:t_idx_max] * window.data.data, delta_t=1. / ts_data.sample_rate, epoch=start_time) # Save time series in relevant repository os.system('mkdir -p segments/%i-%i' % (start_time, end_time)) if make_plot: # Plot time series plot_ts(tmp_ts_data, fname='segments/time-series/%i-%i.png' % (start_time, end_time)) # Convert times series to frequency series fs_data = tmp_ts_data.to_frequencyseries() if verbose: print "|- Frequency series data has variance: %s" % fs_data.data.std( )**2 # Whitening (FIXME: Whiten the filters, not the data) fs_data.data /= numpy.sqrt(fd_psd) / numpy.sqrt(2 * fd_psd.delta_f) if verbose: print "|- Whitened frequency series data has variance: %s" % fs_data.data.std( )**2 if verbose: print "|- Create time-frequency plane for current block" # Return the complex snr, along with its associated normalization of the template, # matched filtered against the data #filter.matched_filter_core(types.FrequencySeries(tmp_filter_bank,delta_f=fd_psd.delta_f), # fs_data,h_norm=1,psd=fd_psd,low_frequency_cutoff=lal_filters[0].f0, # high_frequency_cutoff=lal_filters[0].f0+2*band) if verbose: print "|- Filtering all %d channels...\n" % nchans, # Initialise 2D zero array tmp_filter_bank = numpy.zeros(len(fd_psd), dtype=numpy.complex128) # Initialise 2D zero array for time-frequency map tf_map = numpy.zeros((nchans, seg_len), dtype=numpy.complex128) # Loop over all the channels for i in range(nchans): # Reset filter bank series tmp_filter_bank *= 0.0 # Index of starting frequency f1 = int(lal_filters[i].f0 / fd_psd.delta_f) # Index of last frequency bin f2 = int((lal_filters[i].f0 + 2 * band) / fd_psd.delta_f) + 1 # (FIXME: Why is there a factor of 2 here?) tmp_filter_bank[f1:f2] = lal_filters[i].data.data * 2 # Define the template to filter the frequency series with template = types.FrequencySeries(tmp_filter_bank, delta_f=fd_psd.delta_f, copy=False) # Create filtered series filtered_series = filter.matched_filter_core( template, fs_data, h_norm=None, psd=None, low_frequency_cutoff=lal_filters[i].f0, high_frequency_cutoff=lal_filters[i].f0 + 2 * band) # Include filtered series in the map tf_map[i, :] = filtered_series[0].numpy() if make_plot: # Plot spectrogram plot_spectrogram(numpy.abs(tf_map).T, dt=tmp_ts_data.delta_t, df=band, ymax=ts_data.sample_rate / 2., t0=start_time, t1=end_time, fname='segments/time-frequency/%i-%i.png' % (start_time, end_time)) plot_tiles_ts(numpy.abs(tf_map), 2, 1, sample_rate=ts_data.sample_rate, t0=start_time, t1=end_time, fname='segments/%i-%i/ts.png' % (start_time, end_time)) #plot_tiles_tf(numpy.abs(tf_map),2,1,ymax=ts_data.sample_rate/2, # sample_rate=ts_data.sample_rate,t0=start_time,t1=end_time, # fname='segments/%i-%i/tf.png'%(start_time,end_time)) # Loop through powers of 2 up to number of channels for nc_sum in range(0, int(math.log(nchans, 2)))[::-1]: # Calculate total number of summed channels nc_sum = 2**nc_sum if verbose: print "\n\t|- Contructing tiles containing %d narrow band channels" % nc_sum # Compute full bandwidth of virtual channel df = band * nc_sum # Compute minimal signal's duration in virtual channel dt = 1.0 / (2 * df) # Compute under sampling rate us_rate = int(round(dt / ts_data.delta_t)) if verbose: print "\t|- Undersampling rate for this level: %f" % ( ts_data.sample_rate / us_rate) if verbose: print "\t|- Calculating tiles..." # Clip the boundaries to remove window corruption clip_samples = int(psd_segment_length * window_fraction * ts_data.sample_rate / 2) # Undersample narrow band channel's time series # Apply clipping condition because [0:-0] does not give the full array tf_map_temp = tf_map[:,clip_samples:-clip_samples:us_rate] \ if clip_samples > 0 else tf_map[:,::us_rate] # Initialise final tile time-frequency map tiles = numpy.zeros(((nchans + 1) / nc_sum, tf_map_temp.shape[1])) # Loop over tile index for i in xrange(len(tiles)): # Sum all inner narrow band channels ts_tile = numpy.absolute(tf_map_temp[nc_sum * i:nc_sum * (i + 1)].sum(axis=0)) # Define index of last narrow band channel for given tile n = (i + 1) * nc_sum - 1 n = n - 1 if n == len(lal_filters) else n # Computer withened inner products of each input filter with itself mu_sq = nc_sum * lalburst.ExcessPowerFilterInnerProduct( lal_filters[n], lal_filters[n], spec_corr, None) #kmax = nc_sum-1 if n==len(lal_filters) else nc_sum-2 # Loop over the inner narrow band channels for k in xrange(0, nc_sum - 1): # Computer whitened filter inner products between input adjacent filters mu_sq += 2 * lalburst.ExcessPowerFilterInnerProduct( lal_filters[n - k], lal_filters[n - 1 - k], spec_corr, None) # Normalise tile's time series tiles[i] = ts_tile.real**2 / mu_sq if verbose: print "\t|- TF-plane is %dx%s samples" % tiles.shape if verbose: print "\t|- Tile energy mean %f, var %f" % (numpy.mean(tiles), numpy.var(tiles)) # Define maximum number of degrees of freedom and check it larger or equal to 2 max_dof = 32 if max_duration == None else int(max_duration / dt) assert max_dof >= 2 # Loop through multiple degrees of freedom for j in [2**l for l in xrange(0, int(math.log(max_dof, 2)))]: # Duration is fixed by the NDOF and bandwidth duration = j * dt if verbose: print "\n\t\t|- Summing DOF = %d ..." % (2 * j) if verbose: print "\t\t|- Explore signal duration of %f s..." % duration # Construct filter sum_filter = numpy.array([1, 0] * (j - 1) + [1]) # Calculate length of filtered time series tlen = tiles.shape[1] - sum_filter.shape[0] + 1 # Initialise filtered time series array dof_tiles = numpy.zeros((tiles.shape[0], tlen)) # Loop over tiles for f in range(tiles.shape[0]): # Sum and drop correlate tiles dof_tiles[f] = fftconvolve(tiles[f], sum_filter, 'valid') if verbose: print "\t\t|- Summed tile energy mean: %f" % ( numpy.mean(dof_tiles)) if verbose: print "\t\t|- Variance tile energy: %f" % ( numpy.var(dof_tiles)) if make_plot: plot_spectrogram( dof_tiles.T, dt, df, ymax=ts_data.sample_rate / 2, t0=start_time, t1=end_time, fname='segments/%i-%i/%02ichans_%02idof.png' % (start_time, end_time, nc_sum, 2 * j)) plot_tiles_ts( dof_tiles, 2 * j, df, sample_rate=ts_data.sample_rate / us_rate, t0=start_time, t1=end_time, fname='segments/%i-%i/%02ichans_%02idof_ts.png' % (start_time, end_time, nc_sum, 2 * j)) plot_tiles_tf( dof_tiles, 2 * j, df, ymax=ts_data.sample_rate / 2, sample_rate=ts_data.sample_rate / us_rate, t0=start_time, t1=end_time, fname='segments/%i-%i/%02ichans_%02idof_tf.png' % (start_time, end_time, nc_sum, 2 * j)) threshold = scipy.stats.chi2.isf(tile_fap, j) if verbose: print "\t\t|- Threshold for this level: %f" % threshold spant, spanf = dof_tiles.shape[1] * dt, dof_tiles.shape[0] * df if verbose: print "\t\t|- Processing %.2fx%.2f time-frequency map." % ( spant, spanf) # Since we clip the data, the start time needs to be adjusted accordingly window_offset_epoch = fs_data.epoch + psd_segment_length * window_fraction / 2 window_offset_epoch = LIGOTimeGPS(float(window_offset_epoch)) for i, j in zip(*numpy.where(dof_tiles > threshold)): event = event_list.RowType() # The points are summed forward in time and thus a `summed point' is the # sum of the previous N points. If this point is above threshold, it # corresponds to a tile which spans the previous N points. However, the # 0th point (due to the convolution specifier 'valid') is actually # already a duration from the start time. All of this means, the + # duration and the - duration cancels, and the tile 'start' is, by # definition, the start of the time frequency map if j = 0 # FIXME: I think this needs a + dt/2 to center the tile properly event.set_start(window_offset_epoch + float(j * dt)) event.set_stop(window_offset_epoch + float(j * dt) + duration) event.set_peak(event.get_start() + duration / 2) event.central_freq = lal_filters[ 0].f0 + band / 2 + i * df + 0.5 * df event.duration = duration event.bandwidth = df event.chisq_dof = 2 * duration * df event.snr = math.sqrt(dof_tiles[i, j] / event.chisq_dof - 1) # FIXME: Magic number 0.62 should be determine empircally event.confidence = -lal.LogChisqCCDF( event.snr * 0.62, event.chisq_dof * 0.62) event.amplitude = None event.process_id = None event.event_id = event_list.get_next_id() event_list.append(event) for event in event_list[::-1]: if event.amplitude != None: continue etime_min_idx = float(event.get_start()) - float( fs_data.epoch) etime_min_idx = int(etime_min_idx / tmp_ts_data.delta_t) etime_max_idx = float(event.get_start()) - float( fs_data.epoch) + event.duration etime_max_idx = int(etime_max_idx / tmp_ts_data.delta_t) # (band / 2) to account for sin^2 wings from finest filters flow_idx = int((event.central_freq - event.bandwidth / 2 - (df / 2) - fmin) / df) fhigh_idx = int((event.central_freq + event.bandwidth / 2 + (df / 2) - fmin) / df) # TODO: Check that the undersampling rate is always commensurate # with the indexing: that is to say that # mod(etime_min_idx, us_rate) == 0 always z_j_b = tf_map[flow_idx:fhigh_idx, etime_min_idx:etime_max_idx:us_rate] # FIXME: Deal with negative hrss^2 -- e.g. remove the event try: event.amplitude = measure_hrss( z_j_b, unwhite_filter_ip[flow_idx:fhigh_idx], unwhite_ss_ip[flow_idx:fhigh_idx - 1], white_ss_ip[flow_idx:fhigh_idx - 1], fd_psd.delta_f, tmp_ts_data.delta_t, len(lal_filters[0].data.data), event.chisq_dof) except ValueError: event.amplitude = 0 if verbose: print "\t\t|- Total number of events: %d" % len(event_list) t_idx_min += int(seg_len * (1 - window_fraction)) t_idx_max += int(seg_len * (1 - window_fraction)) setname = "MagneticFields" __program__ = 'pyburst_excesspower_gnome' start_time = LIGOTimeGPS(int(ts_data.start_time)) end_time = LIGOTimeGPS(int(ts_data.end_time)) inseg = segment(start_time, end_time) xmldoc = ligolw.Document() xmldoc.appendChild(ligolw.LIGO_LW()) ifo = channel_name.split(":")[0] straindict = psd.insert_psd_option_group.__dict__ proc_row = register_to_xmldoc(xmldoc, __program__, straindict, ifos=[ifo], version=git_version.id, cvs_repository=git_version.branch, cvs_entry_time=git_version.date) dt_stride = psd_segment_length sample_rate = ts_data.sample_rate # Amount to overlap successive blocks so as not to lose data window_overlap_samples = window_fraction * sample_rate outseg = inseg.contract(window_fraction * dt_stride / 2) # With a given dt_stride, we cannot process the remainder of this data remainder = math.fmod(abs(outseg), dt_stride * (1 - window_fraction)) # ...so make an accounting of it outseg = segment(outseg[0], outseg[1] - remainder) ss = append_search_summary(xmldoc, proc_row, ifos=(station, ), inseg=inseg, outseg=outseg) for sb in event_list: sb.process_id = proc_row.process_id sb.search = proc_row.program sb.ifo, sb.channel = station, setname xmldoc.childNodes[0].appendChild(event_list) ifostr = ifo if isinstance(ifo, str) else "".join(ifo) st_rnd, end_rnd = int(math.floor(inseg[0])), int(math.ceil(inseg[1])) dur = end_rnd - st_rnd fname = "%s-excesspower-%d-%d.xml.gz" % (ifostr, st_rnd, dur) utils.write_filename(xmldoc, fname, gz=fname.endswith("gz")) plot_triggers(fname)
def build_filter(psd, rate=4096, flow=64, fhigh=2000, filter_len=0, b_wind=16.0, corr=None): """ Build a set of individual channel Hann window frequency filters (with bandwidth 'band') and then transfer them into the time domain as a matrix. The nth row of the matrix contains the time-domain filter for the flow+n*band frequency channel. The overlap is the fraction of the channel which overlaps with the previous channel. If filter_len is not set, then it defaults to nominal minimum width needed for the bandwidth requested. Note: Anything that can be done with this function can be done in a more flexible manner with build_filter_from_xml, so this function is likely to disappear. """ warnings.warn("The use of excesspower.filters.build_filter is deprecated.", DeprecationWarning) # Filter length needs to be long enough to get the pertinent features in # the time domain rate = 2 * psd.deltaF * len(psd.data) if fhigh > rate / 2: print >> sys.stderr, "WARNING: high frequency (%f) requested is higher than sampling rate / 2, adjusting to match." % fhigh fhigh = rate / 2 if fhigh == rate / 2: print >> sys.stderr, "WARNING: high frequency (%f) is equal to Nyquist. Filters will probably be bad. Reduce the high frequency." % fhigh filter_len = 4 * int(rate / b_wind) if filter_len <= 0: print >> sys.stderr, "Invalid filter length (%d). Is your filter bandwidth too small?" % filter_len exit(-1) # define number of band window bands = int((fhigh - flow) / b_wind) - 1 # Build spectral correlation function # NOTE: The default behavior is relative to the Hann window used in the # filter bank and NOT the whitener. It's just not right. Fair warning. # TODO: Is this default even needed anymore? if corr == None: spec_corr = lal.REAL8WindowTwoPointSpectralCorrelation( lal.CreateHannREAL8Window(filter_len), lal.CreateForwardREAL8FFTPlan(filter_len, 1)).data else: spec_corr = numpy.array(corr) # If no PSD is provided, set it equal to unity for all bins #if psd == None: #ifftplan = XLALCreateReverseREAL8FFTPlan( filter_len, 1 ) #else: ifftplan = XLALCreateReverseREAL8FFTPlan((len(psd.data) - 1) * 2, 1) d_len = (len(psd.data) - 1) * 2 # FIXME: Move to main script if b_wind % psd.deltaF != 0: print >> sys.stderr, "WARNING: tile bandwidth is not a multiple of the PSD binning width. The filters (and thus tiles) will not be aligned exactly. This may lead to strange effects and imperfect event reconstruction." filters = numpy.zeros((filter_len - 1) * bands) freq_filters = [] for band in range(bands): # Check that the filter start is aligned with a PSD bin start: # Calculate an approximate integer ratio # the half window offset is omitted since the filter frequency # series is handed to CreateCOMPLEX16FrequencySeries with this # f0 and so this one must match the psd binning alignment freq_off = ((flow + band * b_wind) / psd.deltaF).as_integer_ratio() # If it's not a whole number, e.g. not divisible by deltaF if freq_off[1] != 1: # Subtract off the offending fractional part of deltaF freq_off = (freq_off[0] % freq_off[1]) * psd.deltaF / freq_off[1] print >> sys.stderr, "Warning: Requested frequency settings would not align the filter bins with the PSD bins. Adjusting filter frequencies by %f to compensate. Note that this may not work due to floating point comparisons that are calculated internally by the filter generation. Alternatively, use a low frequency which is a multiple of the PSD bin width (%f)" % ( freq_off, psd.deltaF) # and make sure the offset won't take us below the # lowest frequency available assert freq_off < psd.deltaF freq_off = -freq_off + psd.deltaF else: freq_off = 0 # Make sure everything is aligned now assert ((flow + band * b_wind + freq_off) % psd.deltaF) == 0 try: # Create the EP filter in the FD h_wind = lalburst.XLALCreateExcessPowerFilter( #channel_flow = # The XLAL function's flow corresponds to the left side FWHM, not the near zero point. Thus, the filter *actually* begins at f_cent - band and ends at f_cent + band, and flow = f_cent - band/2 and fhigh = f_cent + band/2 (flow + b_wind / 2.0) + band * b_wind + freq_off, #channel_width = b_wind, #psd = psd, #correlation = spec_corr) except: # The XLAL wrapped function didn't work statuserr = "Filter generation failed for band %f with %d samples.\nPossible relevant bits and pieces that went into the function call:\n" % ( band * b_wind, filter_len) statuserr += "PSD - deltaF: %f, f0 %f, npoints %d\n" % ( psd.deltaF, psd.f0, len(psd.data)) statuserr += "spectrum correlation - npoints %d\n" % len(spec_corr) statuserr += "Filter f0 %f (%f in sample length), bandwidth %f (%f in sample length)" % ( flow + band * b_wind + freq_off, (flow + band * b_wind + freq_off) / psd.deltaF, b_wind, b_wind / psd.deltaF) sys.exit(statuserr) # save the frequency domain filters, if necessary # We make a deep copy here because we don't want the zero padding that # is about to be done to get the filters into the time domain h_wind_copy = laltypes.COMPLEX16FrequencySeries() h_wind_copy.f0 = h_wind.f0 h_wind_copy.deltaF = h_wind.deltaF h_wind_copy.data = copy.deepcopy(h_wind.data) freq_filters.append(h_wind_copy) # Zero pad up to lowest frequency tmpdata = numpy.zeros(len(psd.data), dtype=numpy.complex128) offset = int(h_wind.f0 / h_wind.deltaF) tmpdata[offset:offset + len(h_wind_copy.data)] = h_wind_copy.data h_wind.data = tmpdata h_wind.f0 = 0.0 # DEBUG: Uncomment to dump FD filters #f = open( "filters_fd/hann_%dhz" % int( flow + band*b_wind ), "w" ) #for freq, s in enumerate( h_wind.data ): #f.write( "%f %g\n" % (freq*h_wind.deltaF,s) ) #f.close() # IFFT the window into a time series for use as a TD filter t_series = laltypes.REAL8TimeSeries() t_series.data = numpy.zeros((d_len, ), dtype="double") try: XLALREAL8FreqTimeFFT( # t_series = t_series, # window_freq_series = h_wind, # ifft plan = ifftplan) except: sys.exit( "Failed to get time domain filters. The usual cause of this is a filter length which is only a few PSD bins wide. Try increasing the fft-length property of the whitener." ) td_filter = t_series.data # FIXME: This is a work around for a yet unfound timestamp # drift. Once it's found this should be reverted. #td_filter = numpy.roll( td_filter, filter_len/2 )[:filter_len] td_filter = numpy.roll(td_filter, filter_len / 2)[:filter_len - 1] ## normalize the filters td_filter /= numpy.sqrt(numpy.dot(td_filter, td_filter)) td_filter *= numpy.sqrt(b_wind / psd.deltaF) #filters = numpy.concatenate( (filters, td_filter) ) filters[(filter_len - 1) * band:(filter_len - 1) * (band + 1)] = td_filter # DEBUG: Uncomment to dump TD filters #f = open( "filters_td/hann_%dhz" % int( flow + band*b_wind ), "w" ) #for t, s in enumerate( td_filter ): #f.write( "%g %g\n" % (t/rate,s) ) #f.close() # Shape it into a "matrix-like" object #filters.shape = ( bands, filter_len ) filters.shape = (bands, filter_len - 1) return filters, freq_filters