power.make_dag_directories(config_parser) dag = pipeline.CondorDAG(tempfile.mkstemp(".log", "power_likelihood_", options.condor_log_dir)[1]) dag.set_dag_file("power_likelihood") # # Generate likelihood data # input_cache_nodes = set() round_robin_cache_nodes = [set() for cache in options.round_robin_cache] for seg in options.distribution_segments: if options.verbose: print("generating distribution measurement jobs for %s ..." % str(seg), file=sys.stderr) input_cache_nodes |= power.make_burca_tailor_fragment(dag, set([entry for entry in options.input_cache if entry.segmentlistdict.intersects_segment(seg)]), seg, "LIKELIHOOD_MAIN") for i, (nodes, cache) in enumerate(zip(round_robin_cache_nodes, options.round_robin_cache)): nodes |= power.make_burca_tailor_fragment(dag, set([entry for entry in cache if entry.segmentlistdict.intersects_segment(seg)]), seg, "LIKELIHOOD_RR%02d" % i) # # Compute likelihood ratios for coincs # if options.verbose: print("generating likelihood assignment jobs for main group ...", file=sys.stderr) parents = reduce(lambda a, b: a | b, round_robin_cache_nodes, input_cache_nodes) nodes = power.make_burca2_fragment(dag, options.input_cache, parents, "LIKELIHOOD_MAIN")