print "writing combined fap frames to disk" for t, ts, tS in zip(f_times, f_timeseries, fUL_timeseries): truth = (opts.plotting_gps_start <= t) * (t <= opts.plotting_gps_end) t = t[truth] ts = ts[truth] tS = tS[truth] start = int(t[0]) dt = t[1] - t[0] dur = int(len(t) * dt) fapfr = idq.gdb_timeseriesgwf(gdbdir, opts.classifier, ifo, "_fap%s" % filetag, start, dur) if opts.verbose: print " %s" % fapfr idq.timeseries2frame(fapfr, { fap_channame: ts, fapUL_channame: tS }, t[0], dt) if not opts.skip_gracedb_upload: message = "iDQ fap timeseries for %s at %s within [%d, %d] :" % ( opts.classifier, ifo, start, start + dur) if opts.verbose: print " %s" % message gracedb.writeLog(opts.gracedb_id, message=message, filename=fapfr, tagname=idq.tagnames) #+['data_quality'] ) ### post min-fap value if opts.verbose: print "finding minimum FAP observed within [%.3f, %.3f]" % (opts.start, opts.end)
merged_rank_filename = idq.gdb_timeseries(opts.output_dir, opts.classifier, opts.ifo, "_rank%s" % opts.tag, int(_start), int(_dur)) if opts.verbose: print "\twriting " + merged_rank_filename np.save(event.gzopen(merged_rank_filename, 'w'), ts) merged_rank_filenames.append(merged_rank_filename) rankfr = idq.gdb_timeseriesgwf(opts.output_dir, opts.classifier, opts.ifo, "_rank%s" % opts.tag, int(_start), int(_dur)) if opts.verbose: print "\twriting " + rankfr idq.timeseries2frame(rankfr, {rank_channame: ts}, _start, _dur / (len(t) - 1)) merged_rank_frames.append(rankfr) # generate and write summary statistics (r_min, r_max, r_mean, r_stdv) = idq.stats_ts(ts) if r_max > max_rank: max_rank = r_max max_rank_segNo = segNo rank_summaries.append([ _start, _end, _dur / (len(t) - 1), r_min, r_max, r_mean, r_stdv,
### write combined data to disk if opts.verbose: print "writing combined fap frames to disk" for t, ts, tS in zip(f_times, f_timeseries, fUL_timeseries): truth = (opts.plotting_gps_start <= t)*(t <= opts.plotting_gps_end) t = t[truth] ts = ts[truth] tS = tS[truth] start = int(t[0]) dt = t[1]-t[0] dur = int(len(t)*dt) fapfr = idq.gdb_timeseriesgwf( gdbdir , opts.classifier, ifo, "_fap%s"%filetag, start, dur) if opts.verbose: print " %s"%fapfr idq.timeseries2frame( fapfr, {fap_channame:ts, fapUL_channame:tS}, t[0], dt ) if not opts.skip_gracedb_upload: message = "iDQ fap timeseries for %s at %s within [%d, %d] :"%(opts.classifier, ifo, start, start+dur) if opts.verbose: print " %s"%message gracedb.writeLog( opts.gracedb_id, message=message, filename=fapfr ) #, tagname=['data_quality'] ) ### post min-fap value if opts.verbose: print "finding minimum FAP observed within [%.3f, %.3f]"%(opts.start, opts.end) min_fap = 1.0 for (t, ts) in zip(f_times, f_timeseries): # ensure time series only fall within desired range truth = (opts.start <= t) * (t <= opts.end) ts = ts[truth] t = t[truth]
# opts.classifier, # opts.tag, # int(_start), # int(_dur)) merged_rank_filename = idq.gdb_timeseries(opts.output_dir, opts.classifier, opts.ifo, "_rank%s"%opts.tag, int(_start), int(_dur)) if opts.verbose: print "\twriting " + merged_rank_filename np.save(event.gzopen(merged_rank_filename, 'w'), ts) merged_rank_filenames.append(merged_rank_filename) rankfr = idq.gdb_timeseriesgwf(opts.output_dir, opts.classifier, opts.ifo, "_rank%s"%opts.tag, int(_start), int(_dur)) if opts.verbose: print "\twriting " + rankfr idq.timeseries2frame( rankfr, {rank_channame:ts}, _start, _dur/(len(t)-1) ) merged_rank_frames.append( rankfr ) # generate and write summary statistics (r_min, r_max, r_mean, r_stdv) = idq.stats_ts(ts) if r_max > max_rank: max_rank = r_max max_rank_segNo = segNo rank_summaries.append([ _start, _end, _dur / (len(t) - 1), r_min, r_max, r_mean, r_stdv,