コード例 #1
0
ファイル: filter.py プロジェクト: DorotaDR/lale
    def _get_filter_info(self, expr_to_parse, X) -> Tuple[str, Any, Optional[str]]:
        col_list = X.columns

        if isinstance(expr_to_parse, ast.Call):
            op = expr_to_parse.func

            # for now, we only support single argument predicates
            if len(expr_to_parse.args) != 1:
                raise ValueError(
                    "Filter predicate functions currently only support a single argument"
                )
            arg = expr_to_parse.args[0]
            if _is_ast_subscript(arg):
                lhs = _get_subscript_value(arg)
            elif _is_ast_attribute(arg):
                lhs = arg.attr  # type: ignore
            else:
                raise ValueError(
                    "Filter predicate functions only supports subscript or dot notation for the argument. For example, it.col_name or it['col_name']"
                )
            if lhs not in col_list:
                raise ValueError(
                    "Cannot perform filter predicate operation as {} not a column of input dataframe X.".format(
                        lhs
                    )
                )
            return lhs, op, None

        if _is_ast_subscript(expr_to_parse.left):
            lhs = _get_subscript_value(expr_to_parse.left)
        elif _is_ast_attribute(expr_to_parse.left):
            lhs = expr_to_parse.left.attr
        else:
            raise ValueError(
                "Filter predicate only supports subscript or dot notation for the left hand side. For example, it.col_name or it['col_name']"
            )
        if lhs not in col_list:
            raise ValueError(
                "Cannot perform filter operation as {} not a column of input dataframe X.".format(
                    lhs
                )
            )
        op = expr_to_parse.ops[0]
        if _is_ast_subscript(expr_to_parse.comparators[0]):
            rhs = _get_subscript_value(expr_to_parse.comparators[0])
        elif _is_ast_attribute(expr_to_parse.comparators[0]):
            rhs = expr_to_parse.comparators[0].attr
        elif _is_ast_constant(expr_to_parse.comparators[0]):
            rhs = expr_to_parse.comparators[0].value
        else:
            raise ValueError(
                "Filter predicate only supports subscript or dot notation for the right hand side. For example, it.col_name or it['col_name'] or a constant value"
            )
        if not _is_ast_constant(expr_to_parse.comparators[0]) and rhs not in col_list:
            raise ValueError(
                "Cannot perform filter operation as {} not a column of input dataframe X.".format(
                    rhs
                )
            )
        return lhs, op, rhs
コード例 #2
0
ファイル: functions.py プロジェクト: vaisaxena/lale
def identity(df: Any, column: Expr, new_column_name: str):
    if _is_ast_subscript(column._expr):  # type: ignore
        column_name = column._expr.slice.value.s  # type: ignore
    elif _is_ast_attribute(column._expr):  # type: ignore
        column_name = column._expr.attr  # type: ignore
    else:
        raise ValueError(
            "Expression type not supported. Formats supported: it.column_name or it['column_name']."
        )

    if column_name is None or not column_name.strip():
        raise ValueError(
            "Name of the column to be renamed cannot be None or empty.")
    if new_column_name is None or not new_column_name.strip():
        raise ValueError(
            "New name of the column to be renamed cannot be None or empty.")

    if _is_pandas_df(df):
        df = df.rename(columns={column_name: new_column_name})
    elif spark_installed and _is_spark_df(df):
        df = df.withColumnRenamed(column_name, new_column_name)
    else:
        raise ValueError(
            "Function identity supports only Pandas dataframes or spark dataframes."
        )
    return new_column_name, df
コード例 #3
0
 def get_map_function_output(column, new_column_name):
     functions_module = importlib.import_module("lale.lib.lale.functions")
     if _is_ast_subscript(column._expr) or _is_ast_attribute(column._expr):
         function_name = "identity"
     else:
         function_name = column._expr.func.id
     map_func_to_be_called = getattr(functions_module, function_name)
     return map_func_to_be_called(X, column, new_column_name)
コード例 #4
0
 def _get_group_key(self, expr_to_parse):
     if _is_ast_subscript(expr_to_parse):
         return expr_to_parse.slice.value.s  # type: ignore
     elif _is_ast_attribute(expr_to_parse):
         return expr_to_parse.attr
     else:
         raise ValueError(
             "GroupBy by parameter only supports subscript or dot notation for the key columns. For example, it.col_name or it['col_name']."
         )
コード例 #5
0
 def _get_join_info(cls, expr_to_parse):
     left_key = []
     right_key = []
     if _is_ast_subscript(expr_to_parse.left.value):
         left_name = _get_subscript_value(expr_to_parse.left.value)
     elif _is_ast_attribute(expr_to_parse.left.value):
         left_name = expr_to_parse.left.value.attr
     else:
         raise ValueError(
             "ERROR: Expression type not supported! Formats supported: it.table_name.column_name or it['table_name'].column_name"
         )
     if _is_ast_subscript(expr_to_parse.left):
         left_key.append(_get_subscript_value(expr_to_parse.left))
     elif _is_ast_attribute(expr_to_parse.left):
         left_key.append(expr_to_parse.left.attr)
     else:
         raise ValueError(
             "ERROR: Expression type not supported! Formats supported: it.table_name.column_name or it.table_name['column_name']"
         )
     if _is_ast_subscript(expr_to_parse.comparators[0].value):
         right_name = _get_subscript_value(
             expr_to_parse.comparators[0].value)
     elif _is_ast_attribute(expr_to_parse.comparators[0].value):
         right_name = expr_to_parse.comparators[0].value.attr
     else:
         raise ValueError(
             "ERROR: Expression type not supported! Formats supported: it.table_name.column_name or it['table_name'].column_name"
         )
     if _is_ast_subscript(expr_to_parse.comparators[0]):
         right_key.append(_get_subscript_value(
             expr_to_parse.comparators[0]))
     elif _is_ast_attribute(expr_to_parse.comparators[0]):
         right_key.append(expr_to_parse.comparators[0].attr)
     else:
         raise ValueError(
             "ERROR: Expression type not supported! Formats supported: it.table_name.column_name or it.table_name['column_name']"
         )
     return left_name, left_key, right_name, right_key
コード例 #6
0
    def _get_order_key(self, expr_to_parse) -> Tuple[str, bool]:
        order_asc: bool = True
        col: str
        if isinstance(expr_to_parse, Expr):
            expr_to_parse = expr_to_parse._expr
            if isinstance(expr_to_parse, ast.Call):
                op = expr_to_parse.func
                if isinstance(op, ast.Name):
                    name = op.id
                    if name == "asc":
                        order_asc = True
                    elif name == "desc":
                        order_asc = False
                    else:
                        raise ValueError(
                            "OrderBy descriptor expressions must be either asc or desc"
                        )
                else:
                    raise ValueError(
                        "OrderBy expressions must be a string or an order descriptor (asc, desc)"
                    )

                # for now, we only support single argument predicates
                if len(expr_to_parse.args) != 1:
                    raise ValueError(
                        "OrderBy predicates do not support multiple aruguments",
                    )
                arg = expr_to_parse.args[0]
            else:
                arg = expr_to_parse
        else:
            arg = expr_to_parse
        if isinstance(arg, str):
            col = arg
        elif isinstance(arg, ast.Name):
            col = arg.id  # type: ignore
        elif hasattr(ast, "Constant") and isinstance(arg, ast.Constant):
            col = arg.value  # type: ignore
        elif hasattr(ast, "Str") and isinstance(arg, ast.Str):
            col = arg.s
        elif _is_ast_subscript(arg):
            col = arg.slice.value.s  # type: ignore
        elif _is_ast_attribute(arg):
            col = arg.attr  # type: ignore
        else:
            raise ValueError(
                "OrderBy parameters only support string, subscript or dot notation for the column name. For example, it.col_name or it['col_name']."
            )
        return col, order_asc
コード例 #7
0
ファイル: map.py プロジェクト: hirzel/lale
 def infer_new_name(expr):
     if (_is_ast_call(expr._expr) and _is_ast_name(expr._expr.func)
             and expr._expr.func.id in [
                 "replace",
                 "day_of_month",
                 "day_of_week",
                 "day_of_year",
                 "hour",
                 "minute",
                 "month",
             ] and _is_ast_attribute(expr._expr.args[0])):
         return expr._expr.args[0].attr
     else:
         raise ValueError(
             """New name of the column to be renamed cannot be None or empty. You may want to use a dictionary
             to specify the new column name as the key, and the expression as the value."""
         )
コード例 #8
0
    def transform(self, X):
        agg_info = {}
        agg_expr = {}

        def create_spark_agg_expr(new_col_name, agg_col_func):
            functions_module = importlib.import_module(
                "lale.lib.lale.functions")

            def get_spark_agg_method(agg_method_name):
                return getattr(functions_module, "grouped_" + agg_method_name)

            agg_method = get_spark_agg_method(
                agg_col_func[1])()  # type: ignore
            return agg_method(agg_col_func[0]).alias(new_col_name)

        if not isinstance(self.columns, dict):
            raise ValueError(
                "Aggregate 'columns' parameter should be of dictionary type.")

        for new_col_name, expr in (self.columns.items()
                                   if self.columns is not None else []):
            agg_func = expr._expr.func.id
            expr_to_parse = expr._expr.args[0]
            if _is_ast_subscript(expr_to_parse):
                agg_col = expr_to_parse.slice.value.s  # type: ignore
            elif _is_ast_attribute(expr_to_parse):
                agg_col = expr_to_parse.attr
            else:
                raise ValueError(
                    "Aggregate 'columns' parameter only supports subscript or dot notation for the key columns. For example, it.col_name or it['col_name']."
                )
            agg_info[new_col_name] = (agg_col, agg_func)
        agg_info_sorted = {
            k: v
            for k, v in sorted(agg_info.items(), key=lambda item: item[1])
        }

        if _is_pandas_grouped_df(X):
            for agg_col_func in agg_info_sorted.values():
                if agg_col_func[0] in agg_expr:
                    agg_expr[agg_col_func[0]].append(agg_col_func[1])
                else:
                    agg_expr[agg_col_func[0]] = [agg_col_func[1]]
            try:
                aggregated_df = X.agg(agg_expr)
                aggregated_df.columns = agg_info_sorted.keys()
            except KeyError as e:
                raise KeyError(e)
        elif _is_spark_grouped_df(X):
            agg_expr = [
                create_spark_agg_expr(new_col_name, agg_col_func)
                for new_col_name, agg_col_func in agg_info_sorted.items()
            ]
            try:
                aggregated_df = X.agg(*agg_expr)
            except Exception as e:
                raise Exception(e)
        else:
            raise ValueError(
                "Only pandas and spark dataframes are supported by the Aggregate operator."
            )
        named_aggregated_df = lale.datasets.data_schemas.add_table_name(
            aggregated_df, lale.datasets.data_schemas.get_table_name(X))
        return named_aggregated_df