def test_ada_boost1(self): from sklearn.tree import DecisionTreeClassifier from lale.lib.sklearn import AdaBoostClassifier clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) clf.fit(self.X_train, self.y_train)
def test_ada_boost(self): from lale.lib.sklearn import AdaBoostClassifier, DecisionTreeClassifier clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) trained = clf.auto_configure( self.X_train, self.y_train, optimizer=Hyperopt, max_evals=1 ) # Checking that the inner decision tree does not get the default value for min_samples_leaf, not sure if this will always pass self.assertNotEqual( trained.hyperparams()["base_estimator"].hyperparams()["min_samples_leaf"], 1 )
def test_adaboost_post_estimator_mitigation_base(self): model = AdaBoostClassifier( base_estimator=CalibratedEqOddsPostprocessing( **self.fairness_info, estimator=DecisionTreeClassifier() ) ) self._attempt_fit_predict(model)
def test_trainable_pipeline(self): trainable_pipeline = StandardScaler() >> AdaBoostClassifier() trainable_pipeline.fit(self.X_train, self.y_train) with self.assertWarns(DeprecationWarning): _ = trainable_pipeline.predict_log_proba(self.X_test)
def test_trained_pipeline(self): trainable_pipeline = StandardScaler() >> AdaBoostClassifier() trained_pipeline = trainable_pipeline.fit(self.X_train, self.y_train) _ = trained_pipeline.predict_log_proba(self.X_test)
def test_adaboost_pre_estimator_mitigation_base(self): model = AdaBoostClassifier(base_estimator=DisparateImpactRemover( **self.fairness_info) >> DecisionTreeClassifier()) self._attempt_fit_predict(model)
def test_adaboost_in_estimator_mitigation_base(self): model = AdaBoostClassifier(base_estimator=PrejudiceRemover( **self.fairness_info)) self._attempt_fit_predict(model)