コード例 #1
0
if not opts.projection:
    # Add scale bar, 1/4 width of the plot
    ax.plot([0.0625, 0.3125], [0.0625, 0.0625],
        color='black', linewidth=1, transform=ax.transAxes)
    ax.text(0.0625, 0.0625, '{0:g} Mpc'.format(0.5 * opts.max_distance),
        fontsize=8, transform=ax.transAxes, verticalalignment='bottom')

    # Create marginal distance plot.
    progress.update(-1, 'Plotting distance')
    gs1 = gridspec.GridSpecFromSubplotSpec(5, 5, gs[0, 1])
    ax = fig.add_subplot(gs1[1:-1, 1:-1])

    # Plot marginal distance distribution, integrated over the whole sky.
    d = np.linspace(0, opts.max_distance)
    ax.fill_between(d, marginal_pdf(d, prob, mu, sigma, norm),
        alpha=0.5, color=colors[0])

    # Plot conditional distance distribution at true position
    # and mark true distance.
    for (ra, dec, dist), color in zip(opts.radecdist, colors[1:]):
        theta = 0.5*np.pi - np.deg2rad(dec)
        phi = np.deg2rad(ra)
        ipix = hp.ang2pix(nside, theta, phi)
        ax.fill_between(d, scipy.stats.norm(
            mu[ipix], sigma[ipix]).pdf(d) * norm[ipix] * np.square(d),
            alpha=0.5, color=color)
        ax.axvline(dist, color='black', linewidth=0.5)
        ax.plot(
            [dist], [-0.15], marker=truth_marker, markeredgecolor=color,
            markerfacecolor='none', markeredgewidth=1, clip_on=False,
コード例 #2
0
    ax.text(0.0625,
            0.0625,
            '{0:d} Mpc'.format(int(np.round(0.5 * max_distance))),
            fontsize=8,
            transform=ax.transAxes,
            verticalalignment='bottom')

    # Create marginal distance plot.
    progress.update(-1, 'Plotting distance')
    gs1 = gridspec.GridSpecFromSubplotSpec(5, 5, gs[0, 1])
    ax = fig.add_subplot(gs1[1:-1, 1:-1])

    # Plot marginal distance distribution, integrated over the whole sky.
    d = np.linspace(0, max_distance)
    ax.fill_between(d,
                    marginal_pdf(d, prob, mu, sigma, norm),
                    alpha=0.5,
                    color=colors[0])

    # Plot conditional distance distribution at true position
    # and mark true distance.
    for (ra, dec, dist), color in zip(opts.radecdist, colors[1:]):
        theta = 0.5 * np.pi - np.deg2rad(dec)
        phi = np.deg2rad(ra)
        ipix = hp.ang2pix(nside, theta, phi)
        ax.fill_between(d,
                        scipy.stats.norm(mu[ipix], sigma[ipix]).pdf(d) *
                        norm[ipix] * np.square(d),
                        alpha=0.5,
                        color=color)
        ax.axvline(dist, color='black', linewidth=0.5)
コード例 #3
0
if not opts.projection:
    # Add scale bar, 1/4 width of the plot
    ax.plot([0.0625, 0.3125], [0.0625, 0.0625],
        color='black', linewidth=1, transform=ax.transAxes)
    ax.text(0.0625, 0.0625,
        '{0:d} Mpc'.format(int(np.round(0.5 * max_distance))),
        fontsize=8, transform=ax.transAxes, verticalalignment='bottom')

    # Create marginal distance plot.
    progress.update(-1, 'Plotting distance')
    gs1 = gridspec.GridSpecFromSubplotSpec(5, 5, gs[0, 1])
    ax = fig.add_subplot(gs1[1:-1, 1:-1])

    # Plot marginal distance distribution, integrated over the whole sky.
    d = np.linspace(0, max_distance)
    ax.fill_between(d, marginal_pdf(d, prob, mu, sigma, norm),
        alpha=0.5, color=colors[0])

    # Plot conditional distance distribution at true position
    # and mark true distance.
    for (ra, dec, dist), color in zip(opts.radecdist, colors[1:]):
        theta = 0.5*np.pi - np.deg2rad(dec)
        phi = np.deg2rad(ra)
        ipix = hp.ang2pix(nside, theta, phi)
        ax.fill_between(d, scipy.stats.norm(
            mu[ipix], sigma[ipix]).pdf(d) * norm[ipix] * np.square(d),
            alpha=0.5, color=color)
        ax.axvline(dist, color='black', linewidth=0.5)
        ax.plot(
            [dist], [-0.15], marker=truth_marker, markeredgecolor=color,
            markerfacecolor='none', markeredgewidth=1, clip_on=False,
コード例 #4
0
        [0.0625, 0.3125], [0.0625, 0.0625],
        color='black', linewidth=1, transform=ax.transAxes)
    ax.text(
        0.0625, 0.0625,
        '{0:d} Mpc'.format(int(np.round(0.5 * max_distance))),
        fontsize=8, transform=ax.transAxes, verticalalignment='bottom')

    # Create marginal distance plot.
    progress.update(-1, 'Plotting distance')
    gs1 = gridspec.GridSpecFromSubplotSpec(5, 5, gs[0, 1])
    ax = fig.add_subplot(gs1[1:-1, 1:-1])

    # Plot marginal distance distribution, integrated over the whole sky.
    d = np.linspace(0, max_distance)
    ax.fill_between(
        d, marginal_pdf(d, prob, mu, sigma, norm), alpha=0.5, color=colors[0])

    # Plot conditional distance distribution at true position
    # and mark true distance.
    for (ra, dec, dist), color in zip(opts.radecdist, colors[1:]):
        theta = 0.5*np.pi - np.deg2rad(dec)
        phi = np.deg2rad(ra)
        ipix = hp.ang2pix(nside, theta, phi)
        ax.fill_between(d, scipy.stats.norm(
            mu[ipix], sigma[ipix]).pdf(d) * norm[ipix] * np.square(d),
            alpha=0.5, color=color)
        ax.axvline(dist, color='black', linewidth=0.5)
        ax.plot(
            [dist], [-0.15], marker=truth_marker, markeredgecolor=color,
            markerfacecolor='none', markeredgewidth=1, clip_on=False,
            transform=transforms.blended_transform_factory(