コード例 #1
0
    # FIXME:
    #wfrm_fam = args.waveform_type
    # Just get the first one
    wfrm_fam = h5file.keys()[0]

    odata = h5file[wfrm_fam]
    m1, m2, ovrlp = odata["mass1"], odata["mass2"], odata["overlaps"]
    if opts.verbose:
        print "Using overlap data from %s" % wfrm_fam

# Hopefully the point is already present and we can just get it, otherwise it
# could incur an overlap calculation, or suffer from the effects of being close
# only in Euclidean terms

intr_prms, expand_prms = common_cl.parse_param(opts.intrinsic_param)
pin_prms, _ = common_cl.parse_param(opts.pin_param)
intr_pt = numpy.array([intr_prms[k] for k in sorted(intr_prms)])
# This keeps the list of parameters consistent across runs
intr_prms = sorted(intr_prms.keys())

# Transform and repack initial point
intr_pt = amrlib.apply_transform(intr_pt[numpy.newaxis, :], intr_prms,
                                 opts.distance_coordinates)[0]
intr_pt = dict(zip(intr_prms, intr_pt))

#
# Step 1: retrieve templates / result
#
xmldoc = utils.load_filename(opts.tmplt_bank,
                             contenthandler=ligolw.LIGOLWContentHandler)
コード例 #2
0
    # FIXME:
    #wfrm_fam = args.waveform_type
    # Just get the first one
    wfrm_fam = h5file.keys()[0]

    odata = h5file[wfrm_fam]
    m1, m2, ovrlp = odata["mass1"], odata["mass2"], odata["overlaps"]
    if opts.verbose:
        print("Using overlap data from %s" % wfrm_fam)

# Hopefully the point is already present and we can just get it, otherwise it
# could incur an overlap calculation, or suffer from the effects of being close
# only in Euclidean terms

intr_prms, expand_prms = common_cl.parse_param(opts.intrinsic_param)
pin_prms, _ = common_cl.parse_param(opts.pin_param)
intr_pt = numpy.array([intr_prms[k] for k in sorted(intr_prms)])
# This keeps the list of parameters consistent across runs
intr_prms = sorted(intr_prms.keys())

# Transform and repack initial point
intr_pt = amrlib.apply_transform(intr_pt[numpy.newaxis,:], intr_prms, opts.distance_coordinates)[0]
intr_pt = dict(zip(intr_prms, intr_pt))

#
# Step 1: retrieve templates / result
#
xmldoc = utils.load_filename(opts.tmplt_bank, contenthandler=ligolw.LIGOLWContentHandler)
tmplt_bank = lsctables.SnglInspiralTable.get_table(xmldoc)
コード例 #3
0
    # FIXME:
    #wfrm_fam = args.waveform_type
    # Just get the first one
    wfrm_fam = h5file.keys()[0]

    odata = h5file[wfrm_fam]
    m1, m2, ovrlp = odata["mass1"], odata["mass2"], odata["overlaps"]
    if opts.verbose:
        print("Using overlap data from %s" % wfrm_fam)

# Hopefully the point is already present and we can just get it, otherwise it
# could incur an overlap calculation, or suffer from the effects of being close
# only in Euclidean terms

intr_prms, expand_prms = common_cl.parse_param(opts.intrinsic_param)
pin_prms, _ = common_cl.parse_param(opts.pin_param)
intr_pt = numpy.array([intr_prms[k] for k in sorted(intr_prms)])
# This keeps the list of parameters consistent across runs
intr_prms = sorted(intr_prms.keys())

# Transform and repack initial point
intr_pt = amrlib.apply_transform(intr_pt[numpy.newaxis, :], intr_prms,
                                 opts.distance_coordinates)[0]
intr_pt = dict(zip(intr_prms, intr_pt))

#
# Step 1: retrieve templates / result
#
xmldoc = utils.load_filename(opts.tmplt_bank,
                             contenthandler=ligolw.LIGOLWContentHandler)
コード例 #4
0
    # FIXME:
    #wfrm_fam = args.waveform_type
    # Just get the first one
    wfrm_fam = h5file.keys()[0]

    odata = h5file[wfrm_fam]
    m1, m2, ovrlp = odata["mass1"], odata["mass2"], odata["overlaps"]
    if opts.verbose:
        print "Using overlap data from %s" % wfrm_fam

# Hopefully the point is already present and we can just get it, otherwise it
# could incur an overlap calculation, or suffer from the effects of being close
# only in Euclidean terms

intr_prms, expand_prms = common_cl.parse_param(opts.intrinsic_param)
pin_prms, _ = common_cl.parse_param(opts.pin_param)
intr_pt = numpy.array([intr_prms[k] for k in sorted(intr_prms)])
# This keeps the list of parameters consistent across runs
intr_prms = sorted(intr_prms.keys())

# Transform and repack initial point
intr_pt = amrlib.apply_transform(intr_pt[numpy.newaxis,:], intr_prms, opts.distance_coordinates)[0]
intr_pt = dict(zip(intr_prms, intr_pt))

#
# Step 1: retrieve templates / result
#
xmldoc = utils.load_filename(opts.tmplt_bank, contenthandler=ligolw.LIGOLWContentHandler)
tmplt_bank = lsctables.SnglInspiralTable.get_table(xmldoc)