# module PSIG.tref = float(PSIG.tref) else: PSIG = lsu.ChooseWaveformParams( m1=m1_SI, m2=m2_SI, lambda1=lambda1, lambda2=lambda2, fmin=template_min_freq, approx=lalsim.GetApproximantFromString(opts.approximant) ) # Find a deltaF sufficient for entire range to be explored PTEST = PSIG.copy() # Check the waveform generated in the corners for the # longest possible waveform PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG*min_mc_factor, min_eta) deltaF_1 = lsu.findDeltaF(PTEST) PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG*min_mc_factor, max_eta) deltaF_2 = lsu.findDeltaF(PTEST) # set deltaF accordingly PSIG.deltaF = min(deltaF_1, deltaF_2) PTMPLT = PSIG.copy() if opts.psd_file is None: eff_fisher_psd = lal.LIGOIPsd analyticPSD_Q = True else: psd_map = common_cl.parse_cl_key_value(opts.psd_file) for inst, psdfile in psd_map.items(): if psd_map.has_key(psdfile): psd_map[psdfile].add(inst)
PSIG.tref = float(PSIG.tref) else: PSIG = lsu.ChooseWaveformParams(m1=m1_SI, m2=m2_SI, lambda1=lambda1, lambda2=lambda2, fmin=template_min_freq, approx=lalsim.GetApproximantFromString( opts.approximant)) # Find a deltaF sufficient for entire range to be explored PTEST = PSIG.copy() # Check the waveform generated in the corners for the # longest possible waveform PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG * min_mc_factor, min_eta) deltaF_1 = lsu.findDeltaF(PTEST) PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG * min_mc_factor, max_eta) deltaF_2 = lsu.findDeltaF(PTEST) # set deltaF accordingly PSIG.deltaF = min(deltaF_1, deltaF_2) PTMPLT = PSIG.copy() if opts.psd_file is None: eff_fisher_psd = lal.LIGOIPsd analyticPSD_Q = True else: psd_map = common_cl.parse_cl_key_value(opts.psd_file) for inst, psdfile in psd_map.items(): if psd_map.has_key(psdfile): psd_map[psdfile].add(inst)
def getSamples(graceid, mass1, mass2, chi1, network_snr, samples, PSD, fmin=30, NMcs=5, NEtas=5, NChis=5, mass1_cut=5.0, chi1_cut=0.05, lowMass_approx='lalsim.SpinTaylorT4', highMass_approx='lalsim.IMRPhenomPv2', Forced=False, logFile=False, saveData=False, plot=False, path=False, show=False): m1_SI = mass1 * lal.MSUN_SI m2_SI = mass2 * lal.MSUN_SI # min_mc_factor, max_mc_factor = 0.9, 1.1 min_mc_factor, max_mc_factor = 0.98, 1.02 min_eta, max_eta = 0.05, 0.25 min_chi1, max_chi1 = -0.99, 0.99 # Control evaluation of the effective Fisher grid # NMcs = 10 # NEtas = 10 # NChis = 10 # match_cntr = 0.9 # Fill an ellipsoid of match = 0.9 bank_min_match = 0.97 match_cntr = np.min( [np.max([0.9, 1 - 9.2 / 2 / network_snr**2]), bank_min_match]) ## Richard's suggestion # wide_match = 1 - (1 - match_cntr)**(2/3.0) wide_match = match_cntr * 0.8 ### Richard's suggestion fit_cntr = match_cntr # Do the effective Fisher fit with pts above this match Nrandpts = samples # Requested number of pts to put inside the ellipsoid template_min_freq = fmin ### This needs to be discussed ip_min_freq = fmin ### This needs to be discussed lambda1, lambda2 = 0, 0 # # Setup signal and IP class # param_names = ['Mc', 'eta', 'spin1z'] McSIG = lsu.mchirp(m1_SI, m2_SI) etaSIG = lsu.symRatio(m1_SI, m2_SI) chiSIG = chi1 if logFile: log = open(logFile, 'a') ### Generate log file if Forced + (mass1 > mass1_cut) * ( chi1 > chi1_cut ): ## If forced to use the IMR waveform, or if the mass2 and spin1z values are above the cut. if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'Using IMRPhenomPv2 approximation.' + '\n') else: print 'Using IMRPhenomPv2 approximation.' PSIG = lsu.ChooseWaveformParams(m1=m1_SI, m2=m2_SI, spin1z=chi1, lambda1=lambda1, lambda2=lambda2, fmin=template_min_freq, approx=eval(highMass_approx)) else: if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'Using SpinTaylorT4 approximation.' + '\n') else: print 'Using SpinTaylorT4 approximation.' PSIG = lsu.ChooseWaveformParams(m1=m1_SI, m2=m2_SI, spin1z=chi1, lambda1=lambda1, lambda2=lambda2, fmin=template_min_freq, approx=eval(lowMass_approx)) # Find a deltaF sufficient for entire range to be explored PTEST = PSIG.copy() # Check the waveform generated in the corners for the # longest possible waveform PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG * min_mc_factor, min_eta) deltaF_1 = lsu.findDeltaF(PTEST) PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG * min_mc_factor, max_eta) deltaF_2 = lsu.findDeltaF(PTEST) # set deltaF accordingly PSIG.deltaF = min(deltaF_1, deltaF_2) PTMPLT = PSIG.copy() psd_map = common_cl.parse_cl_key_value(PSD) for inst, psdfile in psd_map.items(): if psd_map.has_key(psdfile): psd_map[psdfile].add(inst) else: psd_map[psdfile] = set([inst]) del psd_map[inst] for psdf, insts in psd_map.iteritems(): xmldoc = utils.load_filename(psdf, contenthandler=series.PSDContentHandler) # FIXME: How to handle multiple PSDs for inst in insts: psd = series.read_psd_xmldoc(xmldoc, root_name=None)[inst] psd_f_high = len(psd.data.data) * psd.deltaF f = np.arange(0, psd_f_high, psd.deltaF) fvals = np.arange(0, psd_f_high, PSIG.deltaF) eff_fisher_psd = np.interp(fvals, f, psd.data.data) analyticPSD_Q = False freq_upper_bound = np.min( [2000.0, (psd.data.length) * (psd.deltaF) * 0.98]) print 'freq_upper_bound = ' + str(freq_upper_bound) IP = lsu.Overlap(fLow=ip_min_freq, fMax=freq_upper_bound, deltaF=PSIG.deltaF, psd=eff_fisher_psd, analyticPSD_Q=analyticPSD_Q) hfSIG = lsu.norm_hoff(PSIG, IP) # Find appropriate parameter ranges min_mc = McSIG * min_mc_factor max_mc = McSIG * max_mc_factor param_ranges = eff.find_effective_Fisher_region( PSIG, IP, wide_match, param_names, [[min_mc, max_mc], [min_eta, max_eta], [min_chi1, max_chi1]]) # setup uniform parameter grid for effective Fisher pts_per_dim = [NMcs, NEtas, NChis] Mcpts, etapts, chipts = eff.make_regular_1d_grids(param_ranges, pts_per_dim) etapts = map(lsu.sanitize_eta, etapts) McMESH, etaMESH, chiMESH = eff.multi_dim_meshgrid(Mcpts, etapts, chipts) McFLAT, etaFLAT, chiFLAT = eff.multi_dim_flatgrid(Mcpts, etapts, chipts) dMcMESH = McMESH - McSIG detaMESH = etaMESH - etaSIG dchiMESH = chiMESH - chiSIG dMcFLAT = McFLAT - McSIG detaFLAT = etaFLAT - etaSIG dchiFLAT = chiFLAT - chiSIG grid = eff.multi_dim_grid(Mcpts, etapts, chipts) # Change units on Mc dMcFLAT_MSUN = dMcFLAT / lal.MSUN_SI dMcMESH_MSUN = dMcMESH / lal.MSUN_SI McMESH_MSUN = McMESH / lal.MSUN_SI McSIG_MSUN = McSIG / lal.MSUN_SI # Evaluate ambiguity function on the grid rhos = np.array( eff.evaluate_ip_on_grid(hfSIG, PTMPLT, IP, param_names, grid)) rhogrid = rhos.reshape(NMcs, NEtas, NChis) # Fit to determine effective Fisher matrix # Adapt the match value to make sure all the Evals are positive gam_prior = np.diag( [10. * 10., 4 * 4., 1.] ) # prior on mass, eta, chi. (the 'prior' on mass is mainly used to regularize, and is too narrow) evals = np.array([-1, -1, -1]) count = 0 start = time.time() match_cntrs = np.array([0.97, 0.98, 0.99]) while np.any( np.array([np.real(evals[0]), np.real(evals[1]), np.real(evals[2])]) < 0): if count > 0: if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'At least one of the eval is negative: switching to match of ' + str(match_cntrs[count]) + '\n') else: print 'At least one of the eval is negative: switching to match of ' + str( match_cntrs[count]) wide_match = 1 - (1 - match_cntrs[count])**(2 / 3.0) fit_cntr = match_cntrs[ count] # Do the effective Fisher fit with pts above this match cut = rhos > fit_cntr if np.sum(cut) >= 6: fitgamma = eff.effectiveFisher(eff.residuals3d, rhos[cut], dMcFLAT_MSUN[cut], detaFLAT[cut], dchiFLAT[cut]) # Find the eigenvalues/vectors of the effective Fisher matrix gam = eff.array_to_symmetric_matrix(fitgamma) gam = gam + gam_prior evals, evecs, rot = eff.eigensystem(gam) count += 1 if (count >= 3) and np.any( np.array([ np.real(evals[0]), np.real(evals[1]), np.real(evals[2]) ]) < 0): return adapt_failure(logFile) sys.exit() else: return adapt_failure(logFile) sys.exit() # # Distribute points inside predicted ellipsoid of certain level of overlap # r1 = np.sqrt(2. * (1. - match_cntr) / np.real(evals[0])) # ellipse radii ... r2 = np.sqrt(2. * (1. - match_cntr) / np.real(evals[1])) # ... along eigen-directions r3 = np.sqrt(2. * (1. - match_cntr) / np.real(evals[2])) # ... along eigen-directions ### CHECK ### Should we not use the updated match_cntr value? This seems to be a bug ### NN = 0 NN_total = 0 cart_grid = [[0., 0., 0.]] sph_grid = [[0., 0., 0.]] likelihood_grid = [1.] ## Koh Ueno added while NN < Nrandpts: NN_total += 1 r = np.random.rand() ph = np.random.rand() * 2. * np.pi costh = np.random.rand() * 2. - 1. sinth = np.sqrt(1. - costh * costh) th = np.arccos(costh) rrt = r**(1. / 3.) x1 = r1 * rrt * sinth * np.cos(ph) x2 = r2 * rrt * sinth * np.sin(ph) x3 = r3 * rrt * costh ### CHECK #### cart_grid_point = [x1, x2, x3] cart_grid_point = np.array(np.real(np.dot(rot, cart_grid_point))) rand_Mc = cart_grid_point[0] * lal.MSUN_SI + McSIG # Mc (kg) rand_eta = cart_grid_point[1] + etaSIG # eta rand_chi = cart_grid_point[2] + chiSIG ### CHECK #### ### Koh Ueno: I added the followings to introduce the correct weight for each sample. ### I think we can do this computation only after "if joint_condition" ### if you want to make the computational cost as small as possible. ### I am wondering if we can use the modified "gam" ### (i.e., the gam which gam_prior is added to) ### for the likelihood computation. diff_rand_sample = [(rand_Mc - McSIG) / lal.MSUN_SI, rand_eta - etaSIG, rand_chi - chiSIG] likelihood_tmp = np.dot(np.dot(gam, diff_rand_sample), diff_rand_sample) likelihood = np.exp(-0.5 * network_snr**2 * likelihood_tmp.item(0)) ### Koh Ueno: ends condition1 = rand_eta > 0 condition2 = rand_eta <= 0.25 condition3 = np.abs(rand_chi) < 1.0 joint_condition = condition1 * condition2 * condition3 if joint_condition: cart_grid.append( [cart_grid_point[0], cart_grid_point[1], cart_grid_point[2]]) ## CHECK likelihood_grid.append(likelihood) ### Koh Ueno added NN += 1 cart_grid = np.array(cart_grid) sph_grid = np.array(sph_grid) likelihood_grid = np.array(likelihood_grid) if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'Selected ' + str(NN) + ' points from ' + str(NN_total) + ' random samples within the ellipsoid \n') else: print 'Selected ' + str(NN) + ' points from ' + str( NN_total) + ' random samples within the ellipsoid' # Rotate to get coordinates in parameter basis ### CHECK! No need to rotate again ### # cart_grid = np.array([ np.real( np.dot(rot, cart_grid[i])) # for i in xrange(len(cart_grid)) ]) # Put in convenient units, # change from parameter differential (i.e. dtheta) # to absolute parameter value (i.e. theta = theta_true + dtheta) rand_dMcs_MSUN, rand_detas, rand_dChis = tuple( np.transpose(cart_grid)) # dMc, deta, dchi rand_Mcs = rand_dMcs_MSUN * lal.MSUN_SI + McSIG # Mc (kg) rand_etas = rand_detas + etaSIG # eta rand_chis = rand_dChis + chiSIG # Prune points with unphysical values of eta from cart_grid rand_etas = np.array( map(partial(lsu.sanitize_eta, exception=np.NAN), rand_etas)) cart_grid = np.transpose((rand_Mcs, rand_etas, rand_chis)) #### CHECK #### phys_cut = ~np.isnan(cart_grid).any(1) # cut to remove unphysical pts cart_grid = cart_grid[phys_cut] keep_phys_spins = np.abs(cart_grid[:, 2]) < 1.0 #### CHECK #### cart_grid = cart_grid[keep_phys_spins] #### CHECK #### # Output Cartesian and spherical coordinates of intrinsic grid indices = np.arange(len(cart_grid)) Mcs_MSUN, etas, chis = np.transpose(cart_grid) #### CHECK #### Mcs_MSUN = Mcs_MSUN / lal.MSUN_SI outgrid = np.transpose((Mcs_MSUN, etas, chis)) #### CHECK #### if saveData: if path: data_dir = path + '/intrinsic_grids' else: data_dir = 'intrinsic_grids' os.system('mkdir -p ' + data_dir) np.savetxt(data_dir + '/intrinsic_grid_' + str(graceid) + '_samples.dat', outgrid, fmt='%f\t%f\t%f') if plot: import pylab as pl from mpl_toolkits.mplot3d import Axes3D mc = outgrid[:, 0] eta = outgrid[:, 1] sz1 = outgrid[:, 2] fig = pl.figure(figsize=(12, 10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(mc[1:], eta[1:], sz1[1:], zdir='z', s=3, c='b', alpha=0.2, depthshade=True) xlim = ax.get_xlim3d() ylim = ax.get_ylim3d() zlim = ax.get_zlim3d() print xlim print ylim print zlim ax.scatter(mc, eta, zlim[0] * np.ones(len(outgrid)), zdir='z', s=3, c='k', alpha=0.04, depthshade=True) ax.scatter(mc, ylim[1] * np.ones(len(outgrid)), sz1, zdir='z', s=3, c='k', alpha=0.04, depthshade=True) ax.scatter(xlim[0] * np.ones(len(outgrid)), eta, sz1, zdir='z', s=3, c='k', alpha=0.04, depthshade=True) ax.scatter(mc[0], eta[0], sz1[0], s=100, c='r', depthshade=True) ax.scatter(mc[0], eta[0], zlim[0], s=100, c='r', alpha=0.1, depthshade=True) ax.scatter(mc[0], ylim[1], sz1[0], s=100, c='r', alpha=0.1, depthshade=True) ax.scatter(xlim[0], eta[0], sz1[0], s=100, c='r', alpha=0.1, depthshade=True) ax.set_xlim3d(xlim) ax.set_ylim3d(ylim) ax.set_zlim3d(zlim) ax.set_xlabel('$\\mathcal{M}$') ax.set_ylabel('$\\eta$') ax.set_zlabel('$\\chi_1$') pl.title('$m_1$ = ' + str(mass1) + '$M_{\\odot}$: $m_2$ = ' + str(mass2) + '$M_{\\odot}$: $\\chi_1$ = ' + str(chi1), y=1.03) pl.grid() pl.rcParams.update({'font.size': 13}) if path: plot_dir = path + '/ellipsoid_sample_plots' else: plot_dir = 'ellipsoid_sample_plots' os.system('mkdir -p ' + plot_dir) pl.savefig(plot_dir + '/ellipsoid_sample_' + str(graceid) + '_plot.png') if show: pl.show() return outgrid, likelihood_grid # KU
def getSamples(graceid, mass1, mass2, chi1, network_snr, samples, PSD, fmin=30, NMcs=5, NEtas=5, NChis=5, mc_cut=1.741, lowMass_approx='lalsim.SpinTaylorT4', highMass_approx='lalsim.IMRPhenomPv2', Forced=False, logFile=False, saveData=False, plot=False, path=False, show=False): m1_SI = mass1 * lal.MSUN_SI m2_SI = mass2 * lal.MSUN_SI # min_mc_factor, max_mc_factor = 0.9, 1.1 min_mc_factor, max_mc_factor = 0.98, 1.02 min_eta, max_eta = 0.05, 0.25 min_chi1, max_chi1 = -0.99, 0.99 # match_cntr = 0.9 # Fill an ellipsoid of match = 0.9 bank_min_match = 0.97 match_cntr = np.min([np.max([0.9, 1 - 9.2/2/network_snr**2]), bank_min_match]) ## Richard's suggestion # wide_match = 1 - (1 - match_cntr)**(2/3.0) wide_match = match_cntr * 0.8 ### Richard's suggestion fit_cntr = match_cntr # Do the effective Fisher fit with pts above this match Nrandpts = samples # Requested number of pts to put inside the ellipsoid template_min_freq = fmin ### This needs to be discussed ip_min_freq = fmin ### This needs to be discussed lambda1, lambda2 = 0, 0 # # Setup signal and IP class # param_names = ['Mc', 'eta', 'spin1z'] McSIG = lsu.mchirp(m1_SI, m2_SI) etaSIG = lsu.symRatio(m1_SI, m2_SI) chiSIG = chi1 if logFile: log = open(logFile, 'a') ### Generate log file if Forced + (lsu.mchirp(mass1, mass2) > mc_cut): ## If forced to use the IMR waveform, or if the chirp mass value is above the cut. if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'Using IMRPhenomPv2 approximation.' + '\n') else: print 'Using IMRPhenomPv2 approximation.' PSIG = lsu.ChooseWaveformParams( m1=m1_SI, m2=m2_SI, spin1z=chi1, lambda1=lambda1, lambda2=lambda2, fmin=template_min_freq, approx=eval(highMass_approx) ) else: if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'Using SpinTaylorT4 approximation.' + '\n') else: print 'Using SpinTaylorT4 approximation.' PSIG = lsu.ChooseWaveformParams( m1=m1_SI, m2=m2_SI, spin1z=chi1, lambda1=lambda1, lambda2=lambda2, fmin=template_min_freq, approx=eval(lowMass_approx) ) # Find a deltaF sufficient for entire range to be explored PTEST = PSIG.copy() # Check the waveform generated in the corners for the # longest possible waveform PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG*min_mc_factor, min_eta) deltaF_1 = lsu.findDeltaF(PTEST) PTEST.m1, PTEST.m2 = lsu.m1m2(McSIG*min_mc_factor, max_eta) deltaF_2 = lsu.findDeltaF(PTEST) # set deltaF accordingly PSIG.deltaF = min(deltaF_1, deltaF_2) PTMPLT = PSIG.copy() psd_map = common_cl.parse_cl_key_value(PSD) for inst, psdfile in psd_map.items(): if psd_map.has_key(psdfile): psd_map[psdfile].add(inst) else: psd_map[psdfile] = set([inst]) del psd_map[inst] for psdf, insts in psd_map.iteritems(): xmldoc = utils.load_filename(psdf, contenthandler=series.PSDContentHandler) # FIXME: How to handle multiple PSDs for inst in insts: psd = series.read_psd_xmldoc(xmldoc, root_name=None)[inst] psd_f_high = len(psd.data.data)*psd.deltaF f = np.arange(0, psd_f_high, psd.deltaF) fvals = np.arange(0, psd_f_high, PSIG.deltaF) eff_fisher_psd = np.interp(fvals, f, psd.data.data) analyticPSD_Q = False freq_upper_bound = np.min([2000.0, (psd.data.length) * (psd.deltaF) * 0.98]) print 'freq_upper_bound = ' + str(freq_upper_bound) PSIG.tref = 123456789 IP = lsu.Overlap(fLow = ip_min_freq, fMax=freq_upper_bound, deltaF = PSIG.deltaF, psd = eff_fisher_psd, analyticPSD_Q = analyticPSD_Q ) hfSIG = lsu.norm_hoff(PSIG, IP) # Find appropriate parameter ranges min_mc = McSIG * min_mc_factor max_mc = McSIG * max_mc_factor param_ranges = eff.find_effective_Fisher_region(PSIG, IP, wide_match, param_names, [[min_mc, max_mc],[min_eta, max_eta], [min_chi1, max_chi1]]) # setup uniform parameter grid for effective Fisher pts_per_dim = [NMcs, NEtas, NChis] Mcpts, etapts, chipts = eff.make_regular_1d_grids(param_ranges, pts_per_dim) etapts = map(lsu.sanitize_eta, etapts) McMESH, etaMESH, chiMESH = eff.multi_dim_meshgrid(Mcpts, etapts, chipts) McFLAT, etaFLAT, chiFLAT = eff.multi_dim_flatgrid(Mcpts, etapts, chipts) dMcMESH = McMESH - McSIG detaMESH = etaMESH - etaSIG dchiMESH = chiMESH - chiSIG dMcFLAT = McFLAT - McSIG detaFLAT = etaFLAT - etaSIG dchiFLAT = chiFLAT - chiSIG grid = eff.multi_dim_grid(Mcpts, etapts, chipts) # Change units on Mc dMcFLAT_MSUN = dMcFLAT / lal.MSUN_SI dMcMESH_MSUN = dMcMESH / lal.MSUN_SI McMESH_MSUN = McMESH / lal.MSUN_SI McSIG_MSUN = McSIG / lal.MSUN_SI # Evaluate ambiguity function on the grid rhos = np.array(eff.evaluate_ip_on_grid(hfSIG, PTMPLT, IP, param_names, grid)) rhogrid = rhos.reshape(NMcs, NEtas, NChis) # Fit to determine effective Fisher matrix # Adapt the match value to make sure all the Evals are positive gam_prior = np.diag([10.*10.,4*4.,1.]) # prior on mass, eta, chi. (the 'prior' on mass is mainly used to regularize, and is too narrow) evals = np.array([-1, -1, -1]) count = 0 start = time.time() match_cntrs = np.array([0.97, 0.98, 0.99]) while np.any( np.array( [np.real(evals[0]), np.real(evals[1]), np.real(evals[2])] ) < 0 ): if count>0: if logFile: log.writelines( str(datetime.datetime.today()) + '\t' + 'At least one of the eval is negative: switching to match of ' + str(match_cntrs[count]) + '\n' ) else: print 'At least one of the eval is negative: switching to match of ' + str(match_cntrs[count]) wide_match = 1 - (1 - match_cntrs[count])**(2/3.0) fit_cntr = match_cntrs[count] # Do the effective Fisher fit with pts above this match cut = rhos > fit_cntr if np.sum(cut) >= 6: fitgamma = eff.effectiveFisher(eff.residuals3d, rhos[cut], dMcFLAT_MSUN[cut], detaFLAT[cut], dchiFLAT[cut]) # Find the eigenvalues/vectors of the effective Fisher matrix gam = eff.array_to_symmetric_matrix(fitgamma) gam = gam + gam_prior evals, evecs, rot = eff.eigensystem(gam) count += 1 if (count >= 3) and np.any( np.array( [np.real(evals[0]), np.real(evals[1]), np.real(evals[2])] ) < 0 ): return adapt_failure(logFile, log) sys.exit() else: return adapt_failure(logFile, log) sys.exit() # # Distribute points inside predicted ellipsoid of certain level of overlap # r1 = np.sqrt(2.*(1.-match_cntr)/np.real(evals[0])) # ellipse radii ... r2 = np.sqrt(2.*(1.-match_cntr)/np.real(evals[1])) # ... along eigen-directions r3 = np.sqrt(2.*(1.-match_cntr)/np.real(evals[2])) # ... along eigen-directions ### CHECK ### Should we not use the updated match_cntr value? This seems to be a bug ### NN = 0 NN_total = 0 cart_grid = [[0., 0., 0.]] sph_grid = [[0., 0., 0.]] while NN < Nrandpts: NN_total += 1 r = np.random.rand() ph = np.random.rand() * 2.*np.pi costh = np.random.rand()*2. - 1. sinth = np.sqrt(1. - costh * costh) th = np.arccos(costh) rrt = r**(1./3.) x1 = r1 * rrt * sinth * np.cos(ph) x2 = r2 * rrt * sinth * np.sin(ph) x3 = r3 * rrt * costh ### CHECK #### cart_grid_point = [x1, x2, x3] cart_grid_point = np.array(np.real( np.dot(rot, cart_grid_point)) ) rand_Mc = cart_grid_point[0] * lal.MSUN_SI + McSIG # Mc (kg) rand_eta = cart_grid_point[1] + etaSIG # eta rand_chi = cart_grid_point[2] + chiSIG ### CHECK #### condition1 = rand_eta > 0 condition2 = rand_eta <= 0.25 condition3 = np.abs(rand_chi) < 1.0 joint_condition = condition1 * condition2 * condition3 if joint_condition: cart_grid.append( [cart_grid_point[0], cart_grid_point[1], cart_grid_point[2]] ) ## CHECK NN += 1 cart_grid = np.array(cart_grid) sph_grid = np.array(sph_grid) if logFile: log.writelines(str(datetime.datetime.today()) + '\t' + 'Selected ' + str(NN) + ' points from ' + str(NN_total) + ' random samples within the ellipsoid \n') else: print 'Selected ' + str(NN) + ' points from ' + str(NN_total) + ' random samples within the ellipsoid' # Rotate to get coordinates in parameter basis ### CHECK! No need to rotate again ### # cart_grid = np.array([ np.real( np.dot(rot, cart_grid[i])) # for i in xrange(len(cart_grid)) ]) # Put in convenient units, # change from parameter differential (i.e. dtheta) # to absolute parameter value (i.e. theta = theta_true + dtheta) rand_dMcs_MSUN, rand_detas, rand_dChis = tuple(np.transpose(cart_grid)) # dMc, deta, dchi rand_Mcs = rand_dMcs_MSUN * lal.MSUN_SI + McSIG # Mc (kg) rand_etas = rand_detas + etaSIG # eta rand_chis = rand_dChis + chiSIG # Prune points with unphysical values of eta from cart_grid rand_etas = np.array(map(partial(lsu.sanitize_eta, exception=np.NAN), rand_etas)) cart_grid = np.transpose((rand_Mcs,rand_etas,rand_chis)) #### CHECK #### phys_cut = ~np.isnan(cart_grid).any(1) # cut to remove unphysical pts cart_grid = cart_grid[phys_cut] keep_phys_spins = np.abs(cart_grid[:,2]) < 1.0 #### CHECK #### cart_grid = cart_grid[keep_phys_spins] #### CHECK #### # Output Cartesian and spherical coordinates of intrinsic grid indices = np.arange(len(cart_grid)) Mcs_MSUN, etas, chis = np.transpose(cart_grid) #### CHECK #### Mcs_MSUN = Mcs_MSUN / lal.MSUN_SI outgrid = np.transpose((Mcs_MSUN,etas,chis)) #### CHECK #### if saveData: if path: data_dir = path + '/intrinsic_grids' else: data_dir = 'intrinsic_grids' os.system('mkdir -p ' + data_dir) np.savetxt(data_dir + '/intrinsic_grid_' + str(graceid) + '_samples.dat', outgrid, fmt='%f\t%f\t%f') if plot: import pylab as pl from mpl_toolkits.mplot3d import Axes3D mc = outgrid[:,0] eta = outgrid[:,1] sz1 = outgrid[:,2] fig = pl.figure(figsize=(12, 10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(mc[1:], eta[1:], sz1[1:], zdir='z', s=3, c='b', alpha=0.2, depthshade=True) xlim = ax.get_xlim3d() ylim = ax.get_ylim3d() zlim = ax.get_zlim3d() print xlim print ylim print zlim ax.scatter(mc, eta, zlim[0]*np.ones(len(outgrid)), zdir='z', s=3, c='k', alpha=0.04, depthshade=True) ax.scatter(mc, ylim[1]*np.ones(len(outgrid)), sz1, zdir='z', s=3, c='k', alpha=0.04, depthshade=True) ax.scatter(xlim[0]*np.ones(len(outgrid)), eta, sz1, zdir='z', s=3, c='k', alpha=0.04, depthshade=True) ax.scatter(mc[0], eta[0], sz1[0], s=100, c='r', depthshade=True) ax.scatter(mc[0], eta[0], zlim[0], s=100, c='r', alpha=0.1, depthshade=True) ax.scatter(mc[0], ylim[1], sz1[0], s=100, c='r', alpha=0.1, depthshade=True) ax.scatter(xlim[0], eta[0], sz1[0], s=100, c='r', alpha=0.1, depthshade=True) ax.set_xlim3d(xlim) ax.set_ylim3d(ylim) ax.set_zlim3d(zlim) ax.set_xlabel('$\\mathcal{M}$') ax.set_ylabel('$\\eta$') ax.set_zlabel('$\\chi_1$') pl.title('$m_1$ = ' + str(mass1) + '$M_{\\odot}$: $m_2$ = ' + str(mass2) + '$M_{\\odot}$: $\\chi_1$ = ' + str(chi1), y=1.03) pl.grid() pl.rcParams.update({'font.size': 13}) if path: plot_dir = path + '/ellipsoid_sample_plots' else: plot_dir = 'ellipsoid_sample_plots' os.system('mkdir -p ' + plot_dir) pl.savefig(plot_dir + '/ellipsoid_sample_' + str(graceid) + '_plot.png') if show: pl.show() return outgrid