コード例 #1
0
ファイル: helper_functions.py プロジェクト: PyFstat/PyFstat
def get_sft_array(sftfilepattern, F0=None, dF0=None):
    """Return the raw data (absolute values) from a set of SFTs.

    FIXME: currently only returns data for first detector.

    Parameters
    ----------
    sftfilepattern: str
            Pattern to match SFTs using wildcards (`*?`) and ranges [0-9];
            multiple patterns can be given separated by colons.
    F0, dF0: float or None
        Restrict frequency range to `[F0-dF0,F0+dF0]`.

    Returns
    ----------
    times: np.ndarray
        The SFT starttimes as a 1D array.
    freqs: np.ndarray
        The frequency bins in each SFT.
        These will be the same for each SFT,
        so only a single 1D array is returned.
    data: np.ndarray
        A 2D array of the absolute values of the SFT data
        in each frequency bin at each timestamp.
    """
    if True:  # pragma: no cover
        import warnings

        warnings.warn(
            "`get_sft_array` is deprecated and will be removed in a future release. "
            "Please, use `get_sft_as_arrays` to load SFT complex amplitudes.")

    if F0 is None and dF0 is None:
        fMin = -1
        fMax = -1
    elif F0 is None or dF0 is None:
        raise ValueError("Need either none or both of F0, dF0.")
    else:
        fMin = F0 - dF0
        fMax = F0 + dF0

    SFTCatalog = lalpulsar.SFTdataFind(sftfilepattern,
                                       lalpulsar.SFTConstraints())
    MultiSFTs = lalpulsar.LoadMultiSFTs(SFTCatalog, fMin, fMax)
    ndet = MultiSFTs.length
    if ndet > 1:
        logging.warning(
            "Loaded SFTs from {:d} detectors, only using the first.".format(
                ndet))

    SFTs = MultiSFTs.data[0]
    times = np.array([sft.epoch.gpsSeconds for sft in SFTs.data])
    data = [np.abs(sft.data.data) for sft in SFTs.data]
    data = np.array(data).T
    nbins, nsfts = data.shape

    sft0 = SFTs.data[0]
    freqs = np.linspace(sft0.f0, sft0.f0 + (nbins - 1) * sft0.deltaF, nbins)

    return times, freqs, data
コード例 #2
0
def validate_and_load_SFTs ( globstr, fmin, fmax ):
    sftnames = list(glob.glob(os.path.join(testdir,globstr)))
    assert len(sftnames) == 1
    sftname = sftnames[0]
    app = "lalapps_SFTvalidate"
    cl = app + " " + sftname
    print("Executing: " + cl)
    out = subprocess.check_output(cl, shell=True, stderr=subprocess.STDOUT, universal_newlines=True)
    print("{:s}: {}".format(app,out))
    catalog = lalpulsar.SFTdataFind(sftname, None)
    sfts = lalpulsar.LoadSFTs(catalog, fmin, fmax)
    return sfts, sftname
コード例 #3
0
ファイル: helper_functions.py プロジェクト: pepCV/PyFstat
def get_sft_array(sftfilepattern, data_duration, F0, dF0):
    """ Return the raw data from a set of sfts """

    SFTCatalog = lalpulsar.SFTdataFind(sftfilepattern,
                                       lalpulsar.SFTConstraints())
    MultiSFTs = lalpulsar.LoadMultiSFTs(SFTCatalog, F0 - dF0, F0 + dF0)
    SFTs = MultiSFTs.data[0]
    data = []
    for sft in SFTs.data:
        data.append(np.abs(sft.data.data))
    data = np.array(data).T
    n, nsfts = data.shape
    freqs = np.linspace(sft.f0, sft.f0 + n * sft.deltaF, n)
    times = np.linspace(0, data_duration, nsfts)

    return times, freqs, data
コード例 #4
0
ファイル: test_simulateCW.py プロジェクト: phyytang/lalsuite
def compute_Fstat_spindown_simulateCW():

    # waveform: simple spindown model
    def waveform(h0, cosi, freq, f1dot):
        def wf(dt):
            dphi = lal.TWOPI * (freq * dt + f1dot * 0.5 * dt**2)
            ap = h0 * (1.0 + cosi**2) / 2.0
            ax = h0 * cosi
            return dphi, ap, ax
        return wf

    # waveform parameters
    dt_wf = 5

    # create simulator
    S = simCW.CWSimulator(tref, tstart, Tdata, waveform(h0, cosi, freq, f1dot), dt_wf, phi0, psi, alpha, delta, detector, earth_ephem_file=earth_ephem_file, sun_ephem_file=sun_ephem_file)

    # write SFTs
    for path, i, N in S.write_sft_files(fmax, Tsft, 'simulateCWTest'):
        pass

    # load SFTs from catalog
    sft_catalog = lalpulsar.SFTdataFind('V-1_V1_1800SFT_simCW_simulateCWTest-*.sft', None)

    # create default F-statistic optional arguments
    Fstat_opt_args = lalpulsar.FstatOptionalArgs(lalpulsar.FstatOptionalArgsDefaults)
    Fstat_opt_args.FstatMethod = lalpulsar.FMETHOD_DEMOD_BEST
    Fstat_assume_noise = lalpulsar.MultiNoiseFloor()
    Fstat_assume_noise.length = 1
    Fstat_assume_noise.sqrtSn[0] = assume_sqrtSh
    Fstat_opt_args.assumeSqrtSX = Fstat_assume_noise

    # create F-statistic input data
    Fstat_input = lalpulsar.CreateFstatInput(sft_catalog, fcmin, fcmax, dfreq, ephemerides, Fstat_opt_args)
    Fstat_res = 0
    doppler = lalpulsar.PulsarDopplerParams()
    doppler.refTime = tref
    doppler.Alpha = alpha
    doppler.Delta = delta
    doppler.fkdot[0] = fsmin
    doppler.fkdot[1] = f1dot

    # search SFTs using F-statistic
    Fstat_res = lalpulsar.ComputeFstat(Fstat_res, Fstat_input, doppler, Nfs, lalpulsar.FSTATQ_2F)

    return Fstat_res.twoF
コード例 #5
0
ファイル: snr.py プロジェクト: PyFstat/PyFstat
    def get_multi_detector_states_from_sfts(
        self,
        sftfilepath,
        central_frequency,
        time_offset=None,
        frequency_wing_bins=1,
        sft_constraint=None,
        return_sfts=False,
    ):
        """
        Parameters
        ----------
        sftfilepath: str
            Path to SFT files in a format compatible with XLALSFTdataFind.
        central_frequency: float
            Frequency [Hz] around which SFT data will be retrieved.
            This option is only relevant if further information is to be
            retrieved from the SFTs (i.e. `return_sfts=True`).
        time_offset: float
            Timestamp offset to retrieve detector states.
            Defaults to LALSuite's default of using the central time of an STF (SFT's timestamp + Tsft/2).
        frequency_wing_bins: int
            Frequency bins around the central frequency to retrieve from
            SFT data. Bin size is determined using the SFT baseline time
            as obtained from the catalog.
            This option is only relevant if further information is to be
            retrieved from the SFTs (i.e. `return_sfts=True`).
        sft_constraint: lalpulsar.SFTConstraint
            Optional argument to specify further constraints in XLALSFTdataFind.
        return_sfts: bool
            If True, also return the loaded SFTs. This is useful to compute further
            quantities such as noise weights.

        Returns
        -------
        multi_detector_states: lalpulsar.MultiDetectorStateSeries
            Resulting multi-detector states produced by XLALGetMultiDetectorStatesFromMultiSFTs
        multi_sfts: lalpulsar.MultiSFTVector
            Only if `return_sfts` is True.
            MultiSFTVector produced by XLALLoadMultiSFTs along the specified frequency band.
        """
        # FIXME: Use MultiCatalogView once lalsuite implements the proper
        # SWIG wrapper around XLALLoadMultiSFTsFromView.
        sft_catalog = lalpulsar.SFTdataFind(sftfilepath, sft_constraint)
        df = sft_catalog.data[0].header.deltaF
        wing_Hz = df * frequency_wing_bins
        multi_sfts = lalpulsar.LoadMultiSFTs(
            sft_catalog,
            fMin=central_frequency - wing_Hz,
            fMax=central_frequency + wing_Hz,
        )

        if time_offset is None:
            time_offset = 0.5 / df

        multi_detector_states = lalpulsar.GetMultiDetectorStatesFromMultiSFTs(
            multiSFTs=multi_sfts, edat=self.ephems, tOffset=time_offset)
        if return_sfts:
            return multi_detector_states, multi_sfts
        else:
            return multi_detector_states
コード例 #6
0
ファイル: helper_functions.py プロジェクト: PyFstat/PyFstat
def get_sft_as_arrays(sftfilepattern, fMin=None, fMax=None, constraints=None):
    """

    Parameters
    ----------
    sftfilepattern: str
            Pattern to match SFTs using wildcards (`*?`) and ranges [0-9];
            multiple patterns can be given separated by colons.
    fMin, fMax: float or None
        Restrict frequency range to `[fMin, fMax]`.
        If None, retreive the full frequency range.
    constraints: lalpulsar.SFTConstraints() or None
        Constrains to be fed into XLALSFTdataFind to specify detector,
        GPS time range or timestamps to be retrieved.

    Returns
    ----------
    freqs: np.ndarray
        The frequency bins in each SFT.
        These will be the same for each SFT,
        so only a single 1D array is returned.
    times: dict of np.ndarray
        The SFT start times as a dictionary of 1D arrays, one for each detector.
        Keys correspond to the official detector names as returned by XLALlalpulsar.ListIFOsInCatalog.
    data: dict of np.ndarray
        A dictionary of 2D arrays of the complex Fourier amplitudes of the SFT data
        for each detector in each frequency bin at each timestamp.
        Keys correspond to the official detector names as returned by XLALlalpulsar.ListIFOsInCatalog.
    """

    constraints = constraints or lalpulsar.SFTConstraints()
    if fMin is None and fMax is None:
        fMin = fMax = -1
    elif fMin is None or fMax is None:
        raise ValueError("Need either none or both of fMin, fMax.")

    sft_catalog = lalpulsar.SFTdataFind(sftfilepattern, constraints)
    ifo_labels = lalpulsar.ListIFOsInCatalog(sft_catalog)

    logging.info(
        f"Loading {sft_catalog.length} SFTs from {', '.join(ifo_labels.data)}..."
    )
    multi_sfts = lalpulsar.LoadMultiSFTs(sft_catalog, fMin, fMax)
    logging.info("done!")

    times = {}
    amplitudes = {}

    old_frequencies = None
    for ind, ifo in enumerate(ifo_labels.data):

        sfts = multi_sfts.data[ind]

        times[ifo] = np.array([sft.epoch.gpsSeconds for sft in sfts.data])
        amplitudes[ifo] = np.array([sft.data.data for sft in sfts.data]).T

        nbins, nsfts = amplitudes[ifo].shape

        logging.info(f"{nsfts} retrieved from {ifo}.")

        f0 = sfts.data[0].f0
        df = sfts.data[0].deltaF
        frequencies = np.linspace(f0, f0 + (nbins - 1) * df, nbins)

        if (old_frequencies
                is not None) and not np.allclose(frequencies, old_frequencies):
            raise ValueError(
                f"Frequencies don't match between {ifo_labels.data[ind-1]} and {ifo}"
            )
        old_frequencies = frequencies

    return frequencies, times, amplitudes