コード例 #1
0
def download(geojson, asset, EXECUTION_ID, logger):
    """
    Download dataset from GEE assets.
    """
    logger.debug("Entering download function.")

    d = ee.Image(asset)

    task = util.export_to_cloudstorage(d.int16(), d.projection(), geojson,
                                       'download', logger, EXECUTION_ID)
    task.join()

    logger.debug("Setting up results JSON.")
    u = URLList(task.get_URL_base(), task.get_files())
    gee_results = CloudResults('Raw data download', __version__, [], u)
    results_schema = CloudResultsSchema()
    json_results = results_schema.dump(gee_results)

    return json_results
コード例 #2
0
def run(params, logger):
    """."""
    logger.debug("Loading parameters.")
    year_start = params.get('year_start', 2001)
    year_end = params.get('year_end', 2015)
    geojson = params.get('geojson', None)
    method = params.get('method', 'ndvi_trend')
    ndvi_gee_dataset = params.get('ndvi_gee_dataset', None)
    climate_gee_dataset = params.get('climate_gee_dataset', None)

    logger.debug("Loading geojson.")
    if geojson is None:
        raise GEEIOError("Must specify an input area")
    else:
        geojson = json.loads(geojson)

    if ndvi_gee_dataset is None:
        raise GEEIOError("Must specify an NDVI dataset")

    # Check the ENV. Are we running this locally or in prod?
    if params.get('ENV') == 'dev':
        EXECUTION_ID = str(random.randint(1000000, 99999999))
    else:
        EXECUTION_ID = params.get('EXECUTION_ID', None)

    logger.debug("Running main script.")
    output = productivity_trajectory(year_start, year_end, method,
                                     ndvi_gee_dataset, climate_gee_dataset,
                                     logger)

    ndvi_projection = ee.Image(ndvi_gee_dataset).projection()
    task = util.export_to_cloudstorage(
        output.unmask(-32768).int16(), ndvi_projection, geojson,
        'prod_trajectory', logger, EXECUTION_ID)
    task.join()

    logger.debug("Setting up results JSON.")
    d = [
        BandInfo("Productivity trajectory (trend)",
                 1,
                 no_data_value=-32768,
                 add_to_map=True,
                 metadata={
                     'year_start': year_start,
                     'year_end': year_end
                 }),
        BandInfo("Productivity trajectory (significance)",
                 2,
                 no_data_value=-32768,
                 add_to_map=True,
                 metadata={
                     'year_start': year_start,
                     'year_end': year_end
                 })
    ]
    u = URLList(task.get_URL_base(), task.get_files())
    gee_results = CloudResults('prod_trajectory', __version__, d, u)
    results_schema = CloudResultsSchema()
    json_results = results_schema.dump(gee_results)

    return json_results.data
コード例 #3
0
def land_cover(year_baseline, year_target, geojson, trans_matrix, remap_matrix,
               EXECUTION_ID, logger):
    """
    Calculate land cover indicator.
    """
    logger.debug("Entering land_cover function.")

    ## land cover
    lc = ee.Image(
        "users/geflanddegradation/toolbox_datasets/lcov_esacc_1992_2015")
    lc = lc.where(lc.eq(9999), -32768)
    lc = lc.updateMask(lc.neq(-32768))

    ## target land cover map reclassified to IPCC 6 classes
    lc_tg_raw = lc.select('y{}'.format(year_target))
    lc_tg_remapped = lc_tg_raw.remap(remap_matrix[0], remap_matrix[1])

    ## baseline land cover map reclassified to IPCC 6 classes
    lc_bl_raw = lc.select('y{}'.format(year_baseline))
    lc_bl_remapped = lc_bl_raw.remap(remap_matrix[0], remap_matrix[1])

    ## compute transition map (first digit for baseline land cover, and second digit for target year land cover)
    lc_tr = lc_bl_remapped.multiply(10).add(lc_tg_remapped)

    ## definition of land cover transitions as degradation (-1), improvement (1), or no relevant change (0)
    lc_dg = lc_tr.remap([
        11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34,
        35, 36, 37, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 61,
        62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77
    ], trans_matrix)

    ## Remap persistence classes so they are sequential. This
    ## makes it easier to assign a clear color ramp in QGIS.
    lc_tr = lc_tr.remap([
        11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33, 34,
        35, 36, 37, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56, 57, 61,
        62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77
    ], [
        1, 12, 13, 14, 15, 16, 17, 21, 2, 23, 24, 25, 26, 27, 31, 32, 3, 34,
        35, 36, 37, 41, 42, 43, 4, 45, 46, 47, 51, 52, 53, 54, 5, 56, 57, 61,
        62, 63, 64, 65, 6, 67, 71, 72, 73, 74, 75, 76, 7
    ])

    lc_out = lc_bl_remapped \
        .addBands(lc_tg_remapped) \
        .addBands(lc_tr) \
        .addBands(lc_dg) \
        .addBands(lc_bl_raw) \
        .addBands(lc_tg_raw)

    # Create export function to export land deg image
    task = util.export_to_cloudstorage(
        lc_out.unmask(-32768).int16(), lc.projection(), geojson, 'land_cover',
        logger, EXECUTION_ID)
    task.join()

    logger.debug("Setting up results JSON.")
    d = [
        BandInfo("Land cover (7 class)",
                 1,
                 no_data_value=9999,
                 add_to_map=True,
                 metadata={'year': year_baseline}),
        BandInfo("Land cover (7 class)",
                 2,
                 no_data_value=9999,
                 add_to_map=True,
                 metadata={'year': year_target}),
        BandInfo("Land cover transitions",
                 3,
                 no_data_value=9999,
                 add_to_map=True,
                 metadata={
                     'year_baseline': year_baseline,
                     'year_target': year_target
                 }),
        BandInfo("Land cover degradation",
                 4,
                 no_data_value=9999,
                 add_to_map=True,
                 metadata={
                     'year_baseline': year_baseline,
                     'year_target': year_target
                 }),
        BandInfo("Land cover (ESA classes)",
                 5,
                 no_data_value=9999,
                 metadata={'year': year_baseline}),
        BandInfo("Land cover (ESA classes)",
                 6,
                 no_data_value=9999,
                 metadata={'year': year_target})
    ]
    u = URLList(task.get_URL_base(), task.get_files())
    gee_results = CloudResults('land_cover', __version__, d, u)
    results_schema = CloudResultsSchema()
    json_results = results_schema.dump(gee_results)

    return json_results
コード例 #4
0
def soc(year_start, year_end, fl, geojson, remap_matrix, dl_annual_soc,
        dl_annual_lc, EXECUTION_ID, logger):
    """
    Calculate SOC indicator.
    """
    logger.debug("Entering soc function.")

    # soc
    #soc = ee.Image("users/geflanddegradation/toolbox_datasets/soc_sgrid_30cm")
    soc = ee.Image(
        "users/geflanddegradation/toolbox_datasets/soc_sgrid_30cm_unccd_20180111"
    )
    soc_t0 = soc.updateMask(soc.neq(-32768))

    # land cover - note it needs to be reprojected to match soc so that it can
    # be output to cloud storage in the same stack
    lc = ee.Image("users/geflanddegradation/toolbox_datasets/lcov_esacc_1992_2015") \
            .select(ee.List.sequence(year_start - 1992, year_end - 1992, 1)) \
            .reproject(crs=soc.projection())
    lc = lc.where(lc.eq(9999), -32768)
    lc = lc.updateMask(lc.neq(-32768))

    if fl == 'per pixel':
        # Setup a raster of climate regimes to use for coding Fl automatically
        climate = ee.Image("users/geflanddegradation/toolbox_datasets/ipcc_climate_zones")\
            .remap([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
                   [0, 2, 1, 2, 1, 2, 1, 2, 1, 5, 4, 4, 3])
        clim_fl = climate.remap([0, 1, 2, 3, 4, 5],
                                [0, 0.8, 0.69, 0.58, 0.48, 0.64])
    # create empty stacks to store annual land cover maps
    stack_lc = ee.Image().select()

    # create empty stacks to store annual soc maps
    stack_soc = ee.Image().select()

    # loop through all the years in the period of analysis to compute changes in SOC
    for k in range(year_end - year_start):
        # land cover map reclassified to UNCCD 7 classes (1: forest, 2:
        # grassland, 3: cropland, 4: wetland, 5: artifitial, 6: bare, 7: water)
        lc_t0 = lc.select(k).remap(remap_matrix[0], remap_matrix[1])

        lc_t1 = lc.select(k + 1).remap(remap_matrix[0], remap_matrix[1])

        if (k == 0):
            # compute transition map (first digit for baseline land cover, and
            # second digit for target year land cover)
            lc_tr = lc_t0.multiply(10).add(lc_t1)

            # compute raster to register years since transition
            tr_time = ee.Image(2).where(lc_t0.neq(lc_t1), 1)
        else:
            # Update time since last transition. Add 1 if land cover remains
            # constant, and reset to 1 if land cover changed.
            tr_time = tr_time.where(lc_t0.eq(lc_t1), tr_time.add(ee.Image(1))) \
                .where(lc_t0.neq(lc_t1), ee.Image(1))

            # compute transition map (first digit for baseline land cover, and
            # second digit for target year land cover), but only update where
            # changes actually ocurred.
            lc_tr_temp = lc_t0.multiply(10).add(lc_t1)
            lc_tr = lc_tr.where(lc_t0.neq(lc_t1), lc_tr_temp)

        # stock change factor for land use - note the 99 and -99 will be
        # recoded using the chosen Fl option
        lc_tr_fl_0 = lc_tr.remap([
            11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33,
            34, 35, 36, 37, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56,
            57, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77
        ], [
            1, 1, 99, 1, 0.1, 0.1, 1, 1, 1, 99, 1, 0.1, 0.1, 1, -99, -99, 1,
            1 / 0.71, 0.1, 0.1, 1, 1, 1, 0.71, 1, 0.1, 0.1, 1, 2, 2, 2, 2, 1,
            1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
        ])

        if fl == 'per pixel':
            lc_tr_fl = lc_tr_fl_0.where(lc_tr_fl_0.eq(99), clim_fl)\
                                 .where(lc_tr_fl_0.eq(-99), ee.Image(1).divide(clim_fl))
        else:
            lc_tr_fl = lc_tr_fl_0.where(lc_tr_fl_0.eq(99), fl)\
                                 .where(lc_tr_fl_0.eq(-99), ee.Image(1).divide(fl))

        # stock change factor for management regime
        lc_tr_fm = lc_tr.remap([
            11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33,
            34, 35, 36, 37, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56,
            57, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77
        ], [
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 1, 1, 1, 1
        ])

        # stock change factor for input of organic matter
        lc_tr_fo = lc_tr.remap([
            11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 31, 32, 33,
            34, 35, 36, 37, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55, 56,
            57, 61, 62, 63, 64, 65, 66, 67, 71, 72, 73, 74, 75, 76, 77
        ], [
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
            1, 1, 1, 1, 1
        ])

        if (k == 0):
            soc_chg = (soc_t0.subtract((soc_t0.multiply(lc_tr_fl).multiply(
                lc_tr_fm).multiply(lc_tr_fo)))).divide(20)

            # compute final SOC stock for the period
            soc_t1 = soc_t0.subtract(soc_chg)

            # add to land cover and soc to stacks from both dates for the first
            # period
            stack_lc = stack_lc.addBands(lc_t0).addBands(lc_t1)
            stack_soc = stack_soc.addBands(soc_t0).addBands(soc_t1)

        else:
            # compute annual change in soc (updates from previous period based
            # on transition and time <20 years)
            soc_chg = soc_chg.where(lc_t0.neq(lc_t1),
                                    (stack_soc.select(k).subtract(stack_soc.select(k) \
                                                                  .multiply(lc_tr_fl) \
                                                                  .multiply(lc_tr_fm) \
                                                                  .multiply(lc_tr_fo))).divide(20)) \
                             .where(tr_time.gt(20), 0)

            # compute final SOC for the period
            socn = stack_soc.select(k).subtract(soc_chg)

            # add land cover and soc to stacks only for the last year in the
            # period
            stack_lc = stack_lc.addBands(lc_t1)
            stack_soc = stack_soc.addBands(socn)

    # compute soc percent change for the analysis period
    soc_pch = ((stack_soc.select(year_end - year_start).subtract(stack_soc.select(0))).divide(stack_soc.select(0))) \
        .multiply(100)

    logger.debug("Setting up results JSON.")
    soc_out = soc_pch
    d = [
        BandInfo("Soil organic carbon (degradation)",
                 1,
                 no_data_value=-32768,
                 add_to_map=True,
                 metadata={
                     'year_start': year_start,
                     'year_end': year_end
                 })
    ]

    if not dl_annual_soc:
        # Output percent change and initial and final SOC layers
        soc_out = soc_out.addBands(stack_soc.select(0)).addBands(
            stack_soc.select(year_end - year_start))
        d.extend([
            BandInfo("Soil organic carbon",
                     2,
                     no_data_value=-32768,
                     add_to_map=True,
                     metadata={'year': year_start}),
            BandInfo("Soil organic carbon",
                     3,
                     no_data_value=-32768,
                     add_to_map=True,
                     metadata={'year': year_end})
        ])
    else:
        # Output percent change and annual SOC layers
        soc_out = soc_out.addBands(stack_soc)
        for year in range(year_start, year_end + 1):
            if (year == year_start) or (year == year_end):
                add_to_map = True
            else:
                add_to_map = False
            d.extend([
                BandInfo("Soil organic carbon",
                         len(d) + 1,
                         no_data_value=-32768,
                         add_to_map=add_to_map,
                         metadata={'year': year})
            ])

    if not dl_annual_lc:
        # Output percent change and initial and final SOC layers
        soc_out = soc_out.addBands(stack_lc.select(0)).addBands(
            stack_lc.select(year_end - year_start))
        d.extend([
            BandInfo("Land cover (7 class)",
                     len(d) + 1,
                     no_data_value=-32768,
                     add_to_map=True,
                     metadata={'year': year_start}),
            BandInfo("Land cover (7 class)",
                     len(d) + 2,
                     no_data_value=-32768,
                     add_to_map=True,
                     metadata={'year': year_end})
        ])
    else:
        soc_out = soc_out.addBands(stack_lc)
        for year in range(year_start, year_end + 1):
            if (year == year_start) or (year == year_end):
                add_to_map = True
            else:
                add_to_map = False
            d.extend([
                BandInfo("Land cover (7 class)",
                         len(d) + 1,
                         no_data_value=-32768,
                         add_to_map=add_to_map,
                         metadata={'year': year})
            ])

    task = util.export_to_cloudstorage(
        soc_out.unmask(-32768).int16(), soc_out.projection(), geojson,
        'soil_organic_carbon', logger, EXECUTION_ID)
    task.join()

    u = URLList(task.get_URL_base(), task.get_files())
    gee_results = CloudResults('soil_organic_carbon', __version__, d, u)
    results_schema = CloudResultsSchema()
    json_results = results_schema.dump(gee_results)

    return json_results
コード例 #5
0
def productivity_performance(year_start, year_end, ndvi_gee_dataset, geojson,
                             EXECUTION_ID, logger):
    logger.debug("Entering productivity_performance function.")

    ndvi_1yr = ee.Image(ndvi_gee_dataset)
    ndvi_1yr = ndvi_1yr.where(ndvi_1yr.eq(9999), -32768)
    ndvi_1yr = ndvi_1yr.updateMask(ndvi_1yr.neq(-32768))

    # land cover data from esa cci
    lc = ee.Image(
        "users/geflanddegradation/toolbox_datasets/lcov_esacc_1992_2015")
    lc = lc.where(lc.eq(9999), -32768)
    lc = lc.updateMask(lc.neq(-32768))

    # global agroecological zones from IIASA
    soil_tax_usda = ee.Image(
        "users/geflanddegradation/toolbox_datasets/soil_tax_usda_sgrid")

    # Make sure the bounding box of the poly is used, and not the geodesic
    # version, for the clipping
    poly = ee.Geometry(geojson, opt_geodesic=False)

    # compute mean ndvi for the period
    ndvi_avg = ndvi_1yr.select(ee.List(['y{}'.format(i) for i in range(year_start, year_end + 1)])) \
        .reduce(ee.Reducer.mean()).rename(['ndvi']).clip(poly)

    # Handle case of year_start that isn't included in the CCI data
    if year_start > 2015:
        lc_year_start = 2015
    elif year_start < 1992:
        lc_year_start = 1992
    else:
        lc_year_start = year_start
    # reclassify lc to ipcc classes
    lc_t0 = lc.select('y{}'.format(lc_year_start)) \
        .remap([10, 11, 12, 20, 30, 40, 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, 100, 160, 170, 110, 130, 180, 190, 120, 121, 122, 140, 150, 151, 152, 153, 200, 201, 202, 210],
               [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36])

    # create a binary mask.
    mask = ndvi_avg.neq(0)

    # define modis projection attributes
    modis_proj = ee.Image(
        "users/geflanddegradation/toolbox_datasets/ndvi_modis_2001_2016"
    ).projection()

    # reproject land cover, soil_tax_usda and avhrr to modis resolution
    lc_proj = lc_t0.reproject(crs=modis_proj)
    soil_tax_usda_proj = soil_tax_usda.reproject(crs=modis_proj)
    ndvi_avg_proj = ndvi_avg.reproject(crs=modis_proj)

    # define unit of analysis as the intersect of soil_tax_usda and land cover
    units = soil_tax_usda_proj.multiply(100).add(lc_proj)

    # create a 2 band raster to compute 90th percentile per unit (analysis restricted by mask and study area)
    ndvi_id = ndvi_avg_proj.addBands(units).updateMask(mask)

    # compute 90th percentile by unit
    perc90 = ndvi_id.reduceRegion(
        reducer=ee.Reducer.percentile([90]).group(groupField=1,
                                                  groupName='code'),
        geometry=poly,
        scale=ee.Number(modis_proj.nominalScale()).getInfo(),
        maxPixels=1e15)

    # Extract the cluster IDs and the 90th percentile
    groups = ee.List(perc90.get("groups"))
    ids = groups.map(lambda d: ee.Dictionary(d).get('code'))
    perc = groups.map(lambda d: ee.Dictionary(d).get('p90'))

    # remap the units raster using their 90th percentile value
    raster_perc = units.remap(ids, perc)

    # compute the ration of observed ndvi to 90th for that class
    obs_ratio = ndvi_avg_proj.divide(raster_perc)

    # aggregate obs_ratio to original NDVI data resolution (for modis this step does not change anything)
    obs_ratio_2 = obs_ratio.reduceResolution(reducer=ee.Reducer.mean(), maxPixels=2000) \
        .reproject(crs=ndvi_1yr.projection())

    # create final degradation output layer (9999 is background), 0 is not
    # degreaded, -1 is degraded
    lp_perf_deg = ee.Image(-32768).where(obs_ratio_2.gte(0.5), 0) \
        .where(obs_ratio_2.lte(0.5), -1)

    lp_perf = lp_perf_deg.addBands(obs_ratio_2.multiply(10000)) \
        .addBands(units)

    task = util.export_to_cloudstorage(
        lp_perf.unmask(-32768).int16(), ndvi_1yr.projection(), geojson,
        'prod_performance', logger, EXECUTION_ID)
    task.join()

    logger.debug("Setting up results JSON.")
    d = [
        BandInfo("Productivity performance (degradation)",
                 1,
                 no_data_value=-32768,
                 add_to_map=True,
                 metadata={
                     'year_start': year_start,
                     'year_end': year_end
                 }),
        BandInfo("Productivity performance (ratio)",
                 2,
                 no_data_value=-32768,
                 add_to_map=False,
                 metadata={
                     'year_start': year_start,
                     'year_end': year_end
                 }),
        BandInfo("Productivity performance (units)",
                 3,
                 no_data_value=-32768,
                 add_to_map=False,
                 metadata={'year_start': year_start})
    ]
    u = URLList(task.get_URL_base(), task.get_files())
    gee_results = CloudResults('prod_performance', __version__, d, u)
    results_schema = CloudResultsSchema()
    json_results = results_schema.dump(gee_results)

    return json_results