コード例 #1
0
mg.set_closed_boundaries_at_grid_edges(False, True, False, True)

# Display a message
print 'Running ...'

#instantiate the components:
fr = FlowRouter(mg)
sp = SPEroder(mg, input_file)
diffuse = PerronNLDiffuse(mg, input_file)
lin_diffuse = DiffusionComponent(grid=mg, input_stream=input_file)

#perform the loops:
for i in xrange(nt):
    #note the input arguments here are not totally standardized between modules
    #mg = diffuse.diffuse(mg, i*dt)
    mg = lin_diffuse.diffuse(mg, dt)
    mg = fr.route_flow(grid=mg)
    mg = sp.erode(mg)

    ##plot long profiles along channels
    pylab.figure(6)
    profile_IDs = prf.channel_nodes(mg, mg.at_node['steepest_slope'],
                                    mg.at_node['drainage_area'],
                                    mg.at_node['upstream_ID_order'],
                                    mg.at_node['flow_receiver'])
    dists_upstr = prf.get_distances_upstream(
        mg, len(mg.at_node['steepest_slope']), profile_IDs,
        mg.at_node['links_to_flow_receiver'])
    prf.plot_profiles(dists_upstr, profile_IDs,
                      mg.at_node['topographic_elevation'])
コード例 #2
0
ファイル: coupled_driver.py プロジェクト: JianweiHan/landlab
#put these values plus roughness into that field
mg['node'][ 'planet_surface__elevation'] = z + np.random.rand(len(z))/100000.

# Display a message
print 'Running ...' 

#instantiate the components:
fr = FlowRouter(mg)
sp = SPEroder(mg, input_file)
diffuse = PerronNLDiffuse(mg, input_file)
lin_diffuse = DiffusionComponent(grid=mg, input_stream=input_file)

#perform the loops:
for i in xrange(nt):
    #mg = diffuse.diffuse(mg, i*dt)
    mg = lin_diffuse.diffuse(mg, dt)
    mg = fr.route_flow(grid=mg)
    mg = sp.erode(mg)
    
    ##plot long profiles along channels
    pylab.figure(6)
    profile_IDs = prf.channel_nodes(mg, mg.at_node['steepest_slope'],
            mg.at_node['drainage_area'], mg.at_node['upstream_ID_order'],
            mg.at_node['flow_receiver'])
    dists_upstr = prf.get_distances_upstream(mg, len(mg.at_node['steepest_slope']),
            profile_IDs, mg.at_node['links_to_flow_receiver'])
    prf.plot_profiles(dists_upstr, profile_IDs, mg.at_node['planet_surface__elevation'])

    print 'Completed loop ', i
 
print 'Completed the simulation. Plotting...'
コード例 #3
0
#instantiate the components:
diffuse = PerronNLDiffuse(mg, input_file)
lin_diffuse = DiffusionComponent(grid=mg, input_stream=input_file)

#Perform the loops.

for i in xrange(nt):
    #This line performs the actual functionality of the component:
    #***NB: both diffusers contain an "automatic" element of uplift.
    #You can suppress this for the linear diffuser with the *internal_uplift* keyword, =False
    #See the docstrings for both classes for more details.
    
    #Switch these lines to switch between diffusion styles:
    #mg = diffuse.diffuse(mg, i*dt) #nonlinear diffusion
    mg = lin_diffuse.diffuse(mg) #linear diffusion

    #Plot a Xsection north-south through the middle of the data, once per loop
    pylab.figure(1)
    elev_r = mg.node_vector_to_raster(mg['node']['topographic_elevation'])
    im = pylab.plot(mg.dx*np.arange(nrows), elev_r[:,int(ncols//2)])

    print 'Completed loop ', i

print 'Completed the simulation. Plotting...'

#Finalize and plot:
#put a title on figure 1
pylab.figure(1)
pylab.title('N-S cross_section')
pylab.xlabel('Distance')
コード例 #4
0
##Reset the elevation field in the grid:
mg['node']['planet_surface__elevation'] = z + np.random.rand(len(z)) / 100000.

# Display a message
print 'Running ...'

##instantiate the components:
#diffuse = PerronNLDiffuse(mg, input_file)
#lin_diffuse = DiffusionComponent(grid=mg)
#lin_diffuse.initialize(input_file)

for i in xrange(nt):
    #This line performs the actual functionality of the component:
    #***NB: the nonlinear diffuser contains an "automatic" element of uplift. If you instead use the linear diffuser, you need to add the uplift manually...
    mg['node']['planet_surface__elevation'][uplifted_nodes] += uplift_per_step
    mg = lin_diffuse.diffuse(mg, internal_uplift=False)  #linear diffusion

    pylab.figure(4)
    elev_r = mg.node_vector_to_raster(mg['node']['planet_surface__elevation'])
    im = pylab.plot(mg.dx * np.arange(nrows), elev_r[:, int(ncols // 2)])

    print 'Completed loop ', i

print 'Completed the simulation. Plotting...'

#Finalize and plot:
#put a title on figure 4
pylab.figure(4)
pylab.title('N-S cross_section, linear diffusion')
pylab.xlabel('Distance')
pylab.ylabel('Elevation')
コード例 #5
0
ファイル: diffusion_driver.py プロジェクト: nicgaspar/landlab
##Reset the elevation field in the grid:
mg["node"]["planet_surface__elevation"] = z + np.random.rand(len(z)) / 100000.0

# Display a message
print "Running ..."

##instantiate the components:
# diffuse = PerronNLDiffuse(mg, input_file)
# lin_diffuse = DiffusionComponent(grid=mg)
# lin_diffuse.initialize(input_file)

for i in xrange(nt):
    # This line performs the actual functionality of the component:
    # ***NB: the nonlinear diffuser contains an "automatic" element of uplift. If you instead use the linear diffuser, you need to add the uplift manually...
    mg["node"]["planet_surface__elevation"][uplifted_nodes] += uplift_per_step
    mg = lin_diffuse.diffuse(mg, internal_uplift=False)  # linear diffusion

    pylab.figure(4)
    elev_r = mg.node_vector_to_raster(mg["node"]["planet_surface__elevation"])
    im = pylab.plot(mg.dx * np.arange(nrows), elev_r[:, int(ncols // 2)])

    print "Completed loop ", i

print "Completed the simulation. Plotting..."

# Finalize and plot:
# put a title on figure 4
pylab.figure(4)
pylab.title("N-S cross_section, linear diffusion")
pylab.xlabel("Distance")
pylab.ylabel("Elevation")
コード例 #6
0
#instantiate the components:
diffuse = PerronNLDiffuse(mg, input_file)
lin_diffuse = DiffusionComponent(grid=mg, input_stream=input_file)

#Perform the loops.

for i in xrange(nt):
    #This line performs the actual functionality of the component:
    #***NB: both diffusers contain an "automatic" element of uplift.
    #You can suppress this for the linear diffuser with the *internal_uplift* keyword, =False
    #See the docstrings for both classes for more details.

    #Switch these lines to switch between diffusion styles:
    #mg = diffuse.diffuse(mg, i*dt) #nonlinear diffusion
    mg = lin_diffuse.diffuse(mg)  #linear diffusion

    #Plot a Xsection north-south through the middle of the data, once per loop
    pylab.figure(1)
    elev_r = mg.node_vector_to_raster(mg['node']['topographic_elevation'])
    im = pylab.plot(mg.dx * np.arange(nrows), elev_r[:, int(ncols // 2)])

    print 'Completed loop ', i

print 'Completed the simulation. Plotting...'

#Finalize and plot:
#put a title on figure 1
pylab.figure(1)
pylab.title('N-S cross_section')
pylab.xlabel('Distance')