コード例 #1
0
ファイル: Subspace.py プロジェクト: yahiri37/MMTK
 def getBasis(self):
     """
     Construct a basis for the subspace by orthonormalization of
     the input vectors using Singular Value Decomposition. The
     basis consists of a sequence of
     :class:`~MMTK.ParticleProperties.ParticleVector`
     objects that are orthonormal in configuration space.
     :returns: the basis
     """
     if self._basis is None:
         basis = N.array([v.array for v in self.vectors], N.Float)
         shape = basis.shape
         nvectors = shape[0]
         natoms = shape[1]
         basis.shape = (nvectors, 3*natoms)
         sv = N.zeros((min(nvectors, 3*natoms),), N.Float)
         min_n_m = min(3*natoms, nvectors)
         vt = N.zeros((nvectors, min_n_m), N.Float)
         work = N.zeros((1,), N.Float)
         iwork = N.zeros((8*min_n_m,), int_type)
         if 3*natoms >= nvectors:
             result = dgesdd('O', 3*natoms, nvectors, basis, 3*natoms,
                             sv, basis, 3*natoms, vt, min_n_m,
                             work, -1, iwork, 0)
             work = N.zeros((int(work[0]),), N.Float)
             result = dgesdd('O', 3*natoms, nvectors, basis, 3*natoms,
                             sv, basis, 3*natoms, vt, min_n_m,
                             work, work.shape[0], iwork, 0)
             u = basis
         else:
             u = N.zeros((min_n_m, 3*natoms), N.Float)
             result = dgesdd('S', 3*natoms, nvectors, basis, 3*natoms,
                             sv, u, 3*natoms, vt, min_n_m,
                             work, -1, iwork, 0)
             work = N.zeros((int(work[0]),), N.Float)
             result = dgesdd('S', 3*natoms, nvectors, basis, 3*natoms,
                             sv, u, 3*natoms, vt, min_n_m,
                             work, work.shape[0], iwork, 0)
         if result['info'] != 0:
             raise ValueError('Lapack SVD: ' + `result['info']`)
         svmax = N.maximum.reduce(sv)
         nvectors = N.add.reduce(N.greater(sv, 1.e-10*svmax))
         u = u[:nvectors]
         u.shape = (nvectors, natoms, 3)
         self._basis = ParticleVectorSet(self.universe, u)
     return self._basis
コード例 #2
0
    def _setupBasis(self):
        if type(self.basis) is type(()):
            excluded, basis = self.basis
        else:
            excluded = []
            basis = self.basis
        nexcluded = len(excluded)
        nmodes = len(basis)
        ntotal = nexcluded + nmodes
        natoms = len(basis[0])

        sv = N.zeros((min(ntotal, 3 * natoms), ), N.Float)
        work_size = N.zeros((1, ), N.Float)
        if nexcluded > 0:
            self.basis = N.zeros((ntotal, 3 * natoms), N.Float)
            for i in range(nexcluded):
                self.basis[i] = N.ravel(excluded[i].array * self.weights)
            min_n_m = min(3 * natoms, nexcluded)
            vt = N.zeros((nexcluded, min_n_m), N.Float)
            iwork = N.zeros((8 * min_n_m, ), int_type)
            if 3 * natoms >= nexcluded:
                result = dgesdd('O', 3 * natoms, nexcluded, self.basis,
                                3 * natoms, sv, self.basis, 3 * natoms, vt,
                                min_n_m, work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]), ), N.Float)
                result = dgesdd('O', 3 * natoms, nexcluded, self.basis,
                                3 * natoms, sv, self.basis, 3 * natoms, vt,
                                min_n_m, work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3 * natoms), N.Float)
                result = dgesdd('S', 3 * natoms, nexcluded, self.basis,
                                3 * natoms, sv, u, 3 * natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]), ), N.Float)
                result = dgesdd('S', 3 * natoms, nexcluded, self.basis,
                                3 * natoms, sv, u, 3 * natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + ` result['info'] `)
            svmax = N.maximum.reduce(sv)
            nexcluded = N.add.reduce(N.greater(sv, 1.e-10 * svmax))
            ntotal = nexcluded + nmodes
            for i in range(nmodes):
                self.basis[i + nexcluded] = N.ravel(basis[i].array *
                                                    self.weights)
            min_n_m = min(3 * natoms, ntotal)
            vt = N.zeros((ntotal, min_n_m), N.Float)
            if 3 * natoms >= ntotal:
                result = dgesdd('O', 3 * natoms, ntotal, self.basis,
                                3 * natoms, sv, self.basis, 3 * natoms, vt,
                                min_n_m, work_size, -1, iwork, 0)
                if int(work_size[0]) > work.shape[0]:
                    work = N.zeros((int(work_size[0]), ), N.Float)
                result = dgesdd('O', 3 * natoms, ntotal, self.basis,
                                3 * natoms, sv, self.basis, 3 * natoms, vt,
                                min_n_m, work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3 * natoms), N.Float)
                result = dgesdd('S', 3 * natoms, ntotal, self.basis,
                                3 * natoms, sv, u, 3 * natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                if int(work_size[0]) > work.shape[0]:
                    work = N.zeros((int(work_size[0]), ), N.Float)
                result = dgesdd('S', 3 * natoms, ntotal, self.basis,
                                3 * natoms, sv, u, 3 * natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + ` result['info'] `)
            svmax = N.maximum.reduce(sv)
            ntotal = N.add.reduce(N.greater(sv, 1.e-10 * svmax))
            nmodes = ntotal - nexcluded
        else:
            if hasattr(self.basis, 'may_modify') and \
               hasattr(self.basis, 'array'):
                self.basis = self.basis.array
            else:
                self.basis = N.array(map(lambda v: v.array, basis))
            N.multiply(self.basis, self.weights, self.basis)
            self.basis.shape = (nmodes, 3 * natoms)
            min_n_m = min(3 * natoms, nmodes)
            vt = N.zeros((nmodes, min_n_m), N.Float)
            iwork = N.zeros((8 * min_n_m, ), int_type)
            if 3 * natoms >= nmodes:
                result = dgesdd('O', 3 * natoms, nmodes, self.basis,
                                3 * natoms, sv, self.basis, 3 * natoms, vt,
                                min_n_m, work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]), ), N.Float)
                result = dgesdd('O', 3 * natoms, nmodes, self.basis,
                                3 * natoms, sv, self.basis, 3 * natoms, vt,
                                min_n_m, work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3 * natoms), N.Float)
                result = dgesdd('S', 3 * natoms, nmodes, self.basis,
                                3 * natoms, sv, u, 3 * natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]), ), N.Float)
                result = dgesdd('S', 3 * natoms, nmodes, self.basis,
                                3 * natoms, sv, u, 3 * natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + ` result['info'] `)
            svmax = N.maximum.reduce(sv)
            nmodes = N.add.reduce(N.greater(sv, 1.e-10 * svmax))
            ntotal = nmodes
        self.basis = self.basis[nexcluded:ntotal, :]
コード例 #3
0
ファイル: Subspace.py プロジェクト: yahiri37/MMTK
    n = 1
    array = N.zeros((n, n), N.Float)
    sv = N.zeros((n,), N.Float)
    u = N.zeros((n, n), N.Float)
    vt = N.zeros((n, n), N.Float)
    work = N.zeros((1,), N.Float)
    int_types = [N.Int, N.Int8, N.Int16, N.Int32]
    try:
        int_types.append(N.Int64)
        int_types.append(N.Int128)
    except AttributeError:
        pass
    for int_type in int_types:
        iwork = N.zeros((1,), int_type)
        try:
            dgesdd('S', n, n, array, n, sv, u, n, vt, n, work, -1, iwork, 0)
            break
        except LapackError:
            pass
    del n, array, sv, u, vt, work, iwork, int_types

del array_package

#
# A set of particle vectors that define a subspace
#
class ParticleVectorSet(object):

    def __init__(self, universe, data):
        self.universe = universe
        if type(data) == N.arraytype:
コード例 #4
0
ファイル: Core.py プロジェクト: davem22101/semanticscience
    def _setupBasis(self):
        if type(self.basis) is type(()):
            excluded, basis = self.basis
        else:
            excluded = []
            basis = self.basis
        nexcluded = len(excluded)
        nmodes = len(basis)
        ntotal = nexcluded + nmodes
        natoms = len(basis[0])

        sv = N.zeros((min(ntotal, 3*natoms),), N.Float)
        work_size = N.zeros((1,), N.Float)
        if nexcluded > 0:
            self.basis = N.zeros((ntotal, 3*natoms), N.Float)
            for i in range(nexcluded):
                self.basis[i] = N.ravel(excluded[i].array*self.weights)
            min_n_m = min(3*natoms, nexcluded)
            vt = N.zeros((nexcluded, min_n_m), N.Float)
            iwork = N.zeros((8*min_n_m,), int_type)
            if 3*natoms >= nexcluded:
                result = dgesdd('O', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, self.basis, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('O', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, self.basis, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3*natoms), N.Float)
                result = dgesdd('S', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, u, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('S', 3*natoms, nexcluded, self.basis,
                                3*natoms, sv, u, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + `result['info']`)
            svmax = N.maximum.reduce(sv)
            nexcluded = N.add.reduce(N.greater(sv, 1.e-10*svmax))
            ntotal = nexcluded + nmodes
            for i in range(nmodes):
                self.basis[i+nexcluded] = N.ravel(basis[i].array*self.weights)
            min_n_m = min(3*natoms, ntotal)
            vt = N.zeros((ntotal, min_n_m), N.Float)
            if 3*natoms >= ntotal:
                result = dgesdd('O', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                if int(work_size[0]) > work.shape[0]:
                    work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('O', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3*natoms), N.Float)
                result = dgesdd('S', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                if int(work_size[0]) > work.shape[0]:
                    work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('S', 3*natoms, ntotal, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + `result['info']`)
            svmax = N.maximum.reduce(sv)
            ntotal = N.add.reduce(N.greater(sv, 1.e-10*svmax))
            nmodes = ntotal - nexcluded
        else:
            if hasattr(self.basis, 'may_modify') and \
               hasattr(self.basis, 'array'):
                self.basis = self.basis.array
            else:
                self.basis = N.array(map(lambda v: v.array, basis))
            N.multiply(self.basis, self.weights, self.basis)
            self.basis.shape = (nmodes, 3*natoms)
            min_n_m = min(3*natoms, nmodes)
            vt = N.zeros((nmodes, min_n_m), N.Float)
            iwork = N.zeros((8*min_n_m,), int_type)
            if 3*natoms >= nmodes:
                result = dgesdd('O', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('O', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, self.basis, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
            else:
                u = N.zeros((min_n_m, 3*natoms), N.Float)
                result = dgesdd('S', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work_size, -1, iwork, 0)
                work = N.zeros((int(work_size[0]),), N.Float)
                result = dgesdd('S', 3*natoms, nmodes, self.basis, 3*natoms,
                                sv, u, 3*natoms, vt, min_n_m,
                                work, work.shape[0], iwork, 0)
                self.basis[:min_n_m] = u
            if result['info'] != 0:
                raise ValueError('Lapack SVD: ' + `result['info']`)
            svmax = N.maximum.reduce(sv)
            nmodes = N.add.reduce(N.greater(sv, 1.e-10*svmax))
            ntotal = nmodes
        self.basis = self.basis[nexcluded:ntotal, :]