コード例 #1
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_simple_stats(self):
        net = collections.OrderedDict()
        net['l_in'] = InputLayer((None, 784))
        net['l_shape'] = ReshapeLayer(net['l_in'], (-1, 1, 28, 28))
        net['l_conv'] = Conv2DLayer(net['l_shape'],
                                    num_filters=3,
                                    filter_size=3,
                                    W=Constant(1.),
                                    pad=1)
        net['l_out'] = DenseLayer(net['l_conv'],
                                  num_units=10,
                                  W=Constant(1.),
                                  nonlinearity=softmax)

        no_epochs = 5
        ws = lasagne_visualizer.weight_supervisor(net,
                                                  no_epochs,
                                                  mode='all_trainable')
        ws.initialize_grid()
        ws.accumulate_weight_stats()

        self.assertEquals(ws.max_weights.values(), [[1.]] * 2)
        self.assertEquals(ws.min_weights.values(), [[1.]] * 2)
        self.assertItemsEqual(ws.mean_weights.values(), [[1.]] * 2)
        self.assertItemsEqual(ws.err_band_lo_weights.values(), [[1.]] * 2)
        self.assertItemsEqual(ws.err_band_hi_weights.values(), [[1.]] * 2)
コード例 #2
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_init_custom_exception(self):

        net = self.net
        no_epochs = 5

        self.assertRaises(
            Exception,
            lasagne_visualizer.weight_supervisor(net, no_epochs,
                                                 mode='custom'))
コード例 #3
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_custom_weight_range_aspect_ratio_exception(self):

        net = self.net
        no_epochs = 5

        custom_weight_range = {'l_out': [1., -1.]}
        ws = lasagne_visualizer.weight_supervisor(
            net,
            no_epochs,
            mode='all_trainable',
            custom_weight_ranges=custom_weight_range)

        self.assertRaises(Exception, ws.initialize_grid)
コード例 #4
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_custom_weight_ranges_initialization(self):

        net = self.net
        no_epochs = 5

        custom_weight_range = {'l_out': [-5., 5.]}
        ws = lasagne_visualizer.weight_supervisor(
            net,
            no_epochs,
            mode='all_trainable',
            custom_weight_ranges=custom_weight_range)

        self.assertEquals(ws.weight_ranges['l_conv'], [-1., 1.])
        self.assertEquals(ws.weight_ranges['l_out'], [-5., 5.])
コード例 #5
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_init_mode_custom(self):

        net = self.net
        no_epochs = 5

        ws = lasagne_visualizer.weight_supervisor(net,
                                                  no_epochs,
                                                  mode='custom',
                                                  layer_names=['l_conv'])

        self.assertItemsEqual(ws.layer_names, ['l_conv'])
        self.assertItemsEqual(ws.max_weights.keys(), ['l_conv'])
        self.assertItemsEqual(ws.min_weights.keys(), ['l_conv'])
        self.assertItemsEqual(ws.mean_weights.keys(), ['l_conv'])
        self.assertItemsEqual(ws.err_band_lo_weights.keys(), ['l_conv'])
        self.assertItemsEqual(ws.err_band_hi_weights.keys(), ['l_conv'])
コード例 #6
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_weight_ranges_initialization(self):

        net = self.net
        no_epochs = 5

        ws = lasagne_visualizer.weight_supervisor(net,
                                                  no_epochs,
                                                  mode='all_trainable')

        self.assertEquals(ws.weight_ranges.values(), [[-1., 1.]] * 2)
        self.assertItemsEqual(ws.layer_names, net.keys()[-2:])
        self.assertItemsEqual(ws.max_weights.keys(), net.keys()[-2:])
        self.assertItemsEqual(ws.min_weights.keys(), net.keys()[-2:])
        self.assertItemsEqual(ws.mean_weights.keys(), net.keys()[-2:])
        self.assertItemsEqual(ws.err_band_lo_weights.keys(), net.keys()[-2:])
        self.assertItemsEqual(ws.err_band_hi_weights.keys(), net.keys()[-2:])
コード例 #7
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_number_of_matplotlib_objects(self):

        net = self.net
        no_epochs = 5

        ws = lasagne_visualizer.weight_supervisor(net,
                                                  no_epochs,
                                                  mode='custom',
                                                  layer_names=['l_conv'])
        ws.initialize_grid()
        ws.accumulate_weight_stats()
        ws.live_plot()

        self.assertEquals(len(ws.axis[0].lines), 1)
        self.assertEquals(len(ws.axis[0].collections), 3)
        self.assertEquals(len(ws.axis[0].texts), 1)
コード例 #8
0
ファイル: tests.py プロジェクト: SimonKohl/lasagne_visualizer
    def test_init_mode_currently_trainable(self):

        net = self.net
        no_epochs = 5

        net['l_conv'].params[net['l_conv'].W].remove('trainable')
        net['l_out'].params[net['l_out'].W].add('trainable')

        ws = lasagne_visualizer.weight_supervisor(net,
                                                  no_epochs,
                                                  mode='currently_trainable')

        self.assertItemsEqual(ws.layer_names, ['l_out'])
        self.assertItemsEqual(ws.max_weights.keys(), ['l_out'])
        self.assertItemsEqual(ws.min_weights.keys(), ['l_out'])
        self.assertItemsEqual(ws.mean_weights.keys(), ['l_out'])
        self.assertItemsEqual(ws.err_band_lo_weights.keys(), ['l_out'])
        self.assertItemsEqual(ws.err_band_hi_weights.keys(), ['l_out'])