コード例 #1
0
ファイル: test_coherence2.py プロジェクト: choldgraf/LaSP
# Testing the coherence

import numpy as np
import matplotlib.pyplot as plt

from lasp.coherence import coherence_jn
from lasp.signal import lowpass_filter

# Make two gaussian signals
sample_rate = 1000.0
tlen = 2.0  # 2 second signal

# Make space for both signals
s1 = np.random.normal(0, 1, int(tlen*sample_rate))
s2 = lowpass_filter(s1, sample_rate, 250.0) + np.random.normal(0, 1, int(tlen*sample_rate))


freq1,c_amp,c_var_amp,c_phase,c_phase_var, cohe_unbiased, cohe_se  = coherence_jn(s1, s2, sample_rate, 0.1, 0.05)

plt.figure()

plt.plot(freq1, cohe_unbiased, 'k-', linewidth=2.0, alpha=0.9)
plt.plot(freq1, cohe_unbiased+2*(cohe_se), 'g-', linewidth=2.0, alpha=0.75)
plt.plot(freq1, cohe_unbiased-2*(cohe_se), 'c-', linewidth=2.0, alpha=0.75)

plt.show()
コード例 #2
0
ファイル: test_coherence.py プロジェクト: choldgraf/LaSP
    def test_cross_psd(self):

        np.random.seed(1234567)
        sr = 1000.0
        dur = 1.0
        nt = int(dur*sr)
        t = np.arange(nt) / sr

        # create a simple signal
        freqs = list()
        freqs.extend(np.arange(8, 12))
        freqs.extend(np.arange(60, 71))
        freqs.extend(np.arange(130, 151))

        s1 = np.zeros([nt])
        for f in freqs:
            s1 += np.sin(2*np.pi*f*t)
        s1 /= s1.max()

        # create a noise corrupted, bandpassed filtered version of s1
        noise = np.random.randn(nt)*1e-1
        # s2 = convolve1d(s1, filt, mode='mirror') + noise
        s2 = bandpass_filter(s1, sample_rate=sr, low_freq=40., high_freq=90.)
        s2 /= s2.max()
        s2 += noise

        # compute the signal's power spectrums
        welch_freq1,welch_psd1 = welch(s1, fs=sr)
        welch_freq2,welch_psd2 = welch(s2, fs=sr)

        welch_psd_max = max(welch_psd1.max(), welch_psd2.max())
        welch_psd1 /= welch_psd_max
        welch_psd2 /= welch_psd_max

        # compute the auto-correlation functions
        lags = np.arange(-200, 201)
        acf1 = correlation_function(s1, s1, lags, normalize=True)
        acf2 = correlation_function(s2, s2, lags, normalize=True)

        # compute the cross correlation functions
        cf12 = correlation_function(s1, s2, lags, normalize=True)
        coh12 = coherency(s1, s2, lags, window_fraction=0.75, noise_floor_db=100.)

        # do an FFT shift to the lags and the window, otherwise the FFT of the ACFs is not equal to the power
        # spectrum for some numerical reason
        shift_lags = fftshift(lags)
        if len(lags) % 2 == 1:
            # shift zero from end of shift_lags to beginning
            shift_lags = np.roll(shift_lags, 1)
        acf1_shift = correlation_function(s1, s1, shift_lags)
        acf2_shift = correlation_function(s2, s2, shift_lags)

        # compute the power spectra from the auto-spectra
        ps1 = fft(acf1_shift)
        ps1_freq = fftfreq(len(acf1), d=1.0/sr)
        fi = ps1_freq > 0
        ps1 = ps1[fi]
        assert np.sum(np.abs(ps1.imag) > 1e-8) == 0, "Nonzero imaginary part for fft(acf1) (%d)" % np.sum(np.abs(ps1.imag) > 1e-8)
        ps1_auto = np.abs(ps1.real)
        ps1_auto_freq = ps1_freq[fi]
        
        ps2 = fft(acf2_shift)
        ps2_freq = fftfreq(len(acf2), d=1.0/sr)
        fi = ps2_freq > 0
        ps2 = ps2[fi]        
        assert np.sum(np.abs(ps2.imag) > 1e-8) == 0, "Nonzero imaginary part for fft(acf2)"
        ps2_auto = np.abs(ps2.real)
        ps2_auto_freq = ps2_freq[fi]

        assert np.sum(ps1_auto < 0) == 0, "negatives in ps1_auto"
        assert np.sum(ps2_auto < 0) == 0, "negatives in ps2_auto"

        # compute the cross spectral density from the correlation function
        cf12_shift = correlation_function(s1, s2, shift_lags, normalize=True)
        psd12 = fft(cf12_shift)
        psd12_freq = fftfreq(len(cf12_shift), d=1.0/sr)
        fi = psd12_freq > 0

        psd12 = np.abs(psd12[fi])
        psd12_freq = psd12_freq[fi]

        # compute the cross spectral density from the power spectra
        psd12_welch = welch_psd1*welch_psd2
        psd12_welch /= psd12_welch.max()

        # compute the coherence from the cross spectral density
        cfreq,coherence,coherence_var,phase_coherence,phase_coherence_var,coh12_freqspace,coh12_freqspace_t = \
            coherence_jn(s1, s2, sample_rate=sr, window_length=0.100, increment=0.050, return_coherency=True)

        coh12_freqspace /= np.abs(coh12_freqspace).max()

        # weight the coherence by one minus the normalized standard deviation
        coherence_std = np.sqrt(coherence_var)
        # cweight = coherence_std / coherence_std.sum()
        # coherence_weighted = (1.0 - cweight)*coherence
        coherence_weighted = coherence - coherence_std
        coherence_weighted[coherence_weighted < 0] = 0

        # compute the coherence from the fft of the coherency
        coherence2 = fft(fftshift(coh12))
        coherence2_freq = fftfreq(len(coherence2), d=1.0/sr)
        fi = coherence2_freq > 0
        coherence2 = np.abs(coherence2[fi])
        coherence2_freq = coherence2_freq[fi]

        """
        plt.figure()
        ax = plt.subplot(2, 1, 1)
        plt.plot(ps1_auto_freq, ps1_auto*ps2_auto, 'c-', linewidth=2.0, alpha=0.75)
        plt.plot(psd12_freq, psd12, 'g-', linewidth=2.0, alpha=0.9)
        plt.plot(ps1_auto_freq, ps1_auto, 'k-', linewidth=2.0, alpha=0.75)
        plt.plot(ps2_auto_freq, ps2_auto, 'r-', linewidth=2.0, alpha=0.75)
        plt.axis('tight')
        plt.legend(['denom', '12', '1', '2'])

        ax = plt.subplot(2, 1, 2)
        plt.plot(psd12_freq, coherence, 'b-')
        plt.axis('tight')
        plt.show()
        """

        # normalize the cross-spectral density and power spectra
        psd12 /= psd12.max()
        ps_auto_max = max(ps1_auto.max(), ps2_auto.max())
        ps1_auto /= ps_auto_max
        ps2_auto /= ps_auto_max

        # make some plots
        plt.figure()

        nrows = 2
        ncols = 2

        # plot the signals
        ax = plt.subplot(nrows, ncols, 1)
        plt.plot(t, s1, 'k-', linewidth=2.0)
        plt.plot(t, s2, 'r-', alpha=0.75, linewidth=2.0)
        plt.xlabel('Time (s)')
        plt.ylabel('Signal')
        plt.axis('tight')

        # plot the spectra
        ax = plt.subplot(nrows, ncols, 2)
        plt.plot(welch_freq1, welch_psd1, 'k-', linewidth=2.0, alpha=0.85)
        plt.plot(ps1_auto_freq, ps1_auto, 'k--', linewidth=2.0, alpha=0.85)
        plt.plot(welch_freq2, welch_psd2, 'r-', alpha=0.75, linewidth=2.0)
        plt.plot(ps2_auto_freq, ps2_auto, 'r--', linewidth=2.0, alpha=0.75)
        plt.axis('tight')
        
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Power')

        # plot the correlation functions
        ax = plt.subplot(nrows, ncols, 3)
        plt.axhline(0, c='k')
        plt.plot(lags, acf1, 'k-', linewidth=2.0)
        plt.plot(lags, acf2, 'r-', alpha=0.75, linewidth=2.0)
        plt.plot(lags, cf12, 'g-', alpha=0.75, linewidth=2.0)
        plt.plot(lags, coh12, 'b-', linewidth=2.0, alpha=0.75)
        plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'm-', linewidth=1.0, alpha=0.95)
        plt.xlabel('Lag (ms)')
        plt.ylabel('Correlation Function')
        plt.axis('tight')
        plt.ylim(-0.5, 1.0)
        handles = custom_legend(['k', 'r', 'g', 'b', 'c'], ['acf1', 'acf2', 'cf12', 'coh12', 'coh12_f'])
        plt.legend(handles=handles)

        # plot the cross spectral density
        ax = plt.subplot(nrows, ncols, 4)
        handles = custom_legend(['g', 'k', 'b'], ['CSD', 'Coherence', 'Weighted'])
        plt.axhline(0, c='k')
        plt.axhline(1, c='k')
        plt.plot(psd12_freq, psd12, 'g-', linewidth=3.0)
        plt.errorbar(cfreq, coherence, yerr=np.sqrt(coherence_var), fmt='k-', ecolor='r', linewidth=3.0, elinewidth=5.0, alpha=0.8)
        plt.plot(cfreq, coherence_weighted, 'b-', linewidth=3.0, alpha=0.75)
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Cross-spectral Density/Coherence')
        plt.legend(handles=handles)

        """
        plt.figure()
        plt.axhline(0, c='k')
        plt.plot(lags, cf12, 'k-', alpha=1, linewidth=2.0)
        plt.plot(lags, coh12, 'b-', linewidth=3.0, alpha=0.75)
        plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'r-', linewidth=2.0, alpha=0.95)
        plt.xlabel('Lag (ms)')
        plt.ylabel('Correlation Function')
        plt.axis('tight')
        plt.ylim(-0.5, 1.0)
        handles = custom_legend(['k', 'b', 'r'], ['cf12', 'coh12', 'coh12_f'])
        plt.legend(handles=handles)
        """

        plt.show()
コード例 #3
0
    def test_cross_psd(self):

        np.random.seed(1234567)
        sr = 1000.0
        dur = 1.0
        nt = int(dur * sr)
        t = np.arange(nt) / sr

        # create a simple signal
        freqs = list()
        freqs.extend(np.arange(8, 12))
        freqs.extend(np.arange(60, 71))
        freqs.extend(np.arange(130, 151))

        s1 = np.zeros([nt])
        for f in freqs:
            s1 += np.sin(2 * np.pi * f * t)
        s1 /= s1.max()

        # create a noise corrupted, bandpassed filtered version of s1
        noise = np.random.randn(nt) * 1e-1
        # s2 = convolve1d(s1, filt, mode='mirror') + noise
        s2 = bandpass_filter(s1, sample_rate=sr, low_freq=40., high_freq=90.)
        s2 /= s2.max()
        s2 += noise

        # compute the signal's power spectrums
        welch_freq1, welch_psd1 = welch(s1, fs=sr)
        welch_freq2, welch_psd2 = welch(s2, fs=sr)

        welch_psd_max = max(welch_psd1.max(), welch_psd2.max())
        welch_psd1 /= welch_psd_max
        welch_psd2 /= welch_psd_max

        # compute the auto-correlation functions
        lags = np.arange(-200, 201)
        acf1 = correlation_function(s1, s1, lags, normalize=True)
        acf2 = correlation_function(s2, s2, lags, normalize=True)

        # compute the cross correlation functions
        cf12 = correlation_function(s1, s2, lags, normalize=True)
        coh12 = coherency(s1,
                          s2,
                          lags,
                          window_fraction=0.75,
                          noise_floor_db=100.)

        # do an FFT shift to the lags and the window, otherwise the FFT of the ACFs is not equal to the power
        # spectrum for some numerical reason
        shift_lags = fftshift(lags)
        if len(lags) % 2 == 1:
            # shift zero from end of shift_lags to beginning
            shift_lags = np.roll(shift_lags, 1)
        acf1_shift = correlation_function(s1, s1, shift_lags)
        acf2_shift = correlation_function(s2, s2, shift_lags)

        # compute the power spectra from the auto-spectra
        ps1 = fft(acf1_shift)
        ps1_freq = fftfreq(len(acf1), d=1.0 / sr)
        fi = ps1_freq > 0
        ps1 = ps1[fi]
        assert np.sum(
            np.abs(ps1.imag) > 1e-8
        ) == 0, "Nonzero imaginary part for fft(acf1) (%d)" % np.sum(
            np.abs(ps1.imag) > 1e-8)
        ps1_auto = np.abs(ps1.real)
        ps1_auto_freq = ps1_freq[fi]

        ps2 = fft(acf2_shift)
        ps2_freq = fftfreq(len(acf2), d=1.0 / sr)
        fi = ps2_freq > 0
        ps2 = ps2[fi]
        assert np.sum(np.abs(ps2.imag) > 1e-8
                      ) == 0, "Nonzero imaginary part for fft(acf2)"
        ps2_auto = np.abs(ps2.real)
        ps2_auto_freq = ps2_freq[fi]

        assert np.sum(ps1_auto < 0) == 0, "negatives in ps1_auto"
        assert np.sum(ps2_auto < 0) == 0, "negatives in ps2_auto"

        # compute the cross spectral density from the correlation function
        cf12_shift = correlation_function(s1, s2, shift_lags, normalize=True)
        psd12 = fft(cf12_shift)
        psd12_freq = fftfreq(len(cf12_shift), d=1.0 / sr)
        fi = psd12_freq > 0

        psd12 = np.abs(psd12[fi])
        psd12_freq = psd12_freq[fi]

        # compute the cross spectral density from the power spectra
        psd12_welch = welch_psd1 * welch_psd2
        psd12_welch /= psd12_welch.max()

        # compute the coherence from the cross spectral density
        cfreq,coherence,coherence_var,phase_coherence,phase_coherence_var,coh12_freqspace,coh12_freqspace_t = \
            coherence_jn(s1, s2, sample_rate=sr, window_length=0.100, increment=0.050, return_coherency=True)

        coh12_freqspace /= np.abs(coh12_freqspace).max()

        # weight the coherence by one minus the normalized standard deviation
        coherence_std = np.sqrt(coherence_var)
        # cweight = coherence_std / coherence_std.sum()
        # coherence_weighted = (1.0 - cweight)*coherence
        coherence_weighted = coherence - coherence_std
        coherence_weighted[coherence_weighted < 0] = 0

        # compute the coherence from the fft of the coherency
        coherence2 = fft(fftshift(coh12))
        coherence2_freq = fftfreq(len(coherence2), d=1.0 / sr)
        fi = coherence2_freq > 0
        coherence2 = np.abs(coherence2[fi])
        coherence2_freq = coherence2_freq[fi]
        """
        plt.figure()
        ax = plt.subplot(2, 1, 1)
        plt.plot(ps1_auto_freq, ps1_auto*ps2_auto, 'c-', linewidth=2.0, alpha=0.75)
        plt.plot(psd12_freq, psd12, 'g-', linewidth=2.0, alpha=0.9)
        plt.plot(ps1_auto_freq, ps1_auto, 'k-', linewidth=2.0, alpha=0.75)
        plt.plot(ps2_auto_freq, ps2_auto, 'r-', linewidth=2.0, alpha=0.75)
        plt.axis('tight')
        plt.legend(['denom', '12', '1', '2'])

        ax = plt.subplot(2, 1, 2)
        plt.plot(psd12_freq, coherence, 'b-')
        plt.axis('tight')
        plt.show()
        """

        # normalize the cross-spectral density and power spectra
        psd12 /= psd12.max()
        ps_auto_max = max(ps1_auto.max(), ps2_auto.max())
        ps1_auto /= ps_auto_max
        ps2_auto /= ps_auto_max

        # make some plots
        plt.figure()

        nrows = 2
        ncols = 2

        # plot the signals
        ax = plt.subplot(nrows, ncols, 1)
        plt.plot(t, s1, 'k-', linewidth=2.0)
        plt.plot(t, s2, 'r-', alpha=0.75, linewidth=2.0)
        plt.xlabel('Time (s)')
        plt.ylabel('Signal')
        plt.axis('tight')

        # plot the spectra
        ax = plt.subplot(nrows, ncols, 2)
        plt.plot(welch_freq1, welch_psd1, 'k-', linewidth=2.0, alpha=0.85)
        plt.plot(ps1_auto_freq, ps1_auto, 'k--', linewidth=2.0, alpha=0.85)
        plt.plot(welch_freq2, welch_psd2, 'r-', alpha=0.75, linewidth=2.0)
        plt.plot(ps2_auto_freq, ps2_auto, 'r--', linewidth=2.0, alpha=0.75)
        plt.axis('tight')

        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Power')

        # plot the correlation functions
        ax = plt.subplot(nrows, ncols, 3)
        plt.axhline(0, c='k')
        plt.plot(lags, acf1, 'k-', linewidth=2.0)
        plt.plot(lags, acf2, 'r-', alpha=0.75, linewidth=2.0)
        plt.plot(lags, cf12, 'g-', alpha=0.75, linewidth=2.0)
        plt.plot(lags, coh12, 'b-', linewidth=2.0, alpha=0.75)
        plt.plot(coh12_freqspace_t * 1e3,
                 coh12_freqspace,
                 'm-',
                 linewidth=1.0,
                 alpha=0.95)
        plt.xlabel('Lag (ms)')
        plt.ylabel('Correlation Function')
        plt.axis('tight')
        plt.ylim(-0.5, 1.0)
        handles = custom_legend(['k', 'r', 'g', 'b', 'c'],
                                ['acf1', 'acf2', 'cf12', 'coh12', 'coh12_f'])
        plt.legend(handles=handles)

        # plot the cross spectral density
        ax = plt.subplot(nrows, ncols, 4)
        handles = custom_legend(['g', 'k', 'b'],
                                ['CSD', 'Coherence', 'Weighted'])
        plt.axhline(0, c='k')
        plt.axhline(1, c='k')
        plt.plot(psd12_freq, psd12, 'g-', linewidth=3.0)
        plt.errorbar(cfreq,
                     coherence,
                     yerr=np.sqrt(coherence_var),
                     fmt='k-',
                     ecolor='r',
                     linewidth=3.0,
                     elinewidth=5.0,
                     alpha=0.8)
        plt.plot(cfreq, coherence_weighted, 'b-', linewidth=3.0, alpha=0.75)
        plt.xlabel('Frequency (Hz)')
        plt.ylabel('Cross-spectral Density/Coherence')
        plt.legend(handles=handles)
        """
        plt.figure()
        plt.axhline(0, c='k')
        plt.plot(lags, cf12, 'k-', alpha=1, linewidth=2.0)
        plt.plot(lags, coh12, 'b-', linewidth=3.0, alpha=0.75)
        plt.plot(coh12_freqspace_t*1e3, coh12_freqspace, 'r-', linewidth=2.0, alpha=0.95)
        plt.xlabel('Lag (ms)')
        plt.ylabel('Correlation Function')
        plt.axis('tight')
        plt.ylim(-0.5, 1.0)
        handles = custom_legend(['k', 'b', 'r'], ['cf12', 'coh12', 'coh12_f'])
        plt.legend(handles=handles)
        """

        plt.show()
コード例 #4
0
# Testing the coherence

import numpy as np
import matplotlib.pyplot as plt

from lasp.coherence import coherence_jn
from lasp.signal import lowpass_filter

# Make two gaussian signals
sample_rate = 1000.0
tlen = 2.0  # 2 second signal

# Make space for both signals
s1 = np.random.normal(0, 1, int(tlen * sample_rate))
s2 = lowpass_filter(s1, sample_rate, 250.0) + np.random.normal(
    0, 1, int(tlen * sample_rate))

freq1, c_amp, c_var_amp, c_phase, c_phase_var, cohe_unbiased, cohe_se = coherence_jn(
    s1, s2, sample_rate, 0.1, 0.05)

plt.figure()

plt.plot(freq1, cohe_unbiased, 'k-', linewidth=2.0, alpha=0.9)
plt.plot(freq1, cohe_unbiased + 2 * (cohe_se), 'g-', linewidth=2.0, alpha=0.75)
plt.plot(freq1, cohe_unbiased - 2 * (cohe_se), 'c-', linewidth=2.0, alpha=0.75)

plt.show()