コード例 #1
0
 def translate(self, offset):
     offset, unsqueezed = three.ensure_batch_dim(offset, 1)
     if offset.shape[0] == 1:
         offset = offset.expand_as(self.position)
     position = three.homogenize(self.position + offset).unsqueeze(-1)
     translation = -(self.rotation_matrix @ position).squeeze(2)
     translation = three.dehomogenize(translation)
     self.translation = translation
     return self
コード例 #2
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def translation_to_4x4(translation):
    translation, unsqueezed = ensure_batch_dim(translation, num_dims=1)

    eye = torch.eye(4, device=translation.device)
    mat = F.pad(translation.unsqueeze(2), [3, 0, 0, 1]) + eye

    if unsqueezed:
        mat = mat.squeeze(0)

    return mat
コード例 #3
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def matrix_3x3_to_4x4(matrix):
    matrix, unsqueezed = ensure_batch_dim(matrix, num_dims=2)

    mat = F.pad(matrix, [0, 1, 0, 1])
    mat[:, -1, -1] = 1.0

    if unsqueezed:
        mat = mat.squeeze(0)

    return mat
コード例 #4
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def extrinsic_to_position(extrinsic):
    extrinsic, unsqueezed = ensure_batch_dim(extrinsic, num_dims=2)

    rot_mat, trans_mat = decompose(extrinsic)
    position = rot_mat.transpose(2, 1) @ trans_mat[:, :, 3, None]
    position = three.dehomogenize(position.squeeze(-1))

    if unsqueezed:
        position = position.squeeze(0)
    return position
コード例 #5
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def intrinsic_to_3x4(matrix):
    matrix, unsqueezed = ensure_batch_dim(matrix, num_dims=2)

    zeros = torch.zeros(1, 3, 1,
                        dtype=matrix.dtype).expand(matrix.shape[0], -1, -1)
    mat = torch.cat((matrix, zeros), dim=-1)

    if unsqueezed:
        mat = mat.squeeze(0)

    return mat
コード例 #6
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def scale_matrix(matrix, scale):
    matrix, unsqueezed = ensure_batch_dim(matrix, num_dims=2)

    out = inverse_transform(matrix)
    out[:, :3, 3] *= scale
    out = inverse_transform(out)

    if unsqueezed:
        out = out.squeeze(0)

    return out
コード例 #7
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def translate_matrix(matrix, offset):
    matrix, unsqueezed = ensure_batch_dim(matrix, num_dims=2)

    out = inverse_transform(matrix)
    out[:, :3, 3] += offset
    out = inverse_transform(out)

    if unsqueezed:
        out = out.squeeze(0)

    return out
コード例 #8
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def inverse_transform(matrix):
    matrix, unsqueezed = ensure_batch_dim(matrix, num_dims=2)

    R, T = decompose(matrix)
    R_inv = R.transpose(1, 2)
    t = T[:, :4, 3].unsqueeze(2)
    t_inv = (R_inv @ t)[:, :3].squeeze(2)

    out = torch.zeros_like(matrix)
    out[:, :3, :3] = R_inv[:, :3, :3]
    out[:, :3, 3] = -t_inv
    out[:, 3, 3] = 1

    if unsqueezed:
        out = out.squeeze(0)

    return out
コード例 #9
0
ファイル: rigid.py プロジェクト: zivzone/latentfusion
def decompose(matrix):
    matrix, unsqueezed = ensure_batch_dim(matrix, num_dims=2)

    # Extract rotation matrix.
    origin = (torch.tensor([0.0, 0.0, 0.0, 1.0],
                           device=matrix.device,
                           dtype=matrix.dtype).unsqueeze(1).unsqueeze(0))
    origin = origin.expand(matrix.size(0), -1, -1)
    R = torch.cat((matrix[:, :, :3], origin), dim=-1)

    # Extract translation matrix.
    eye = torch.eye(4, 3, device=matrix.device).unsqueeze(0).expand(
        matrix.size(0), -1, -1)
    T = torch.cat((eye, matrix[:, :, 3].unsqueeze(-1)), dim=-1)

    if unsqueezed:
        R = R.squeeze(0)
        T = T.squeeze(0)

    return R, T