def output(self): basename = os.path.splitext(self.input()["merged"].basename)[0] return law.SiblingFileCollection({ "x": self.local_target(basename + ".x.0"), "y": self.local_target(basename + ".y.0"), "meta": self.local_target(basename + ".meta"), "dc": self.local_target(basename + ".dc"), })
def output(self): collection = { "evaluations": self.local_target("evaluations_{}.pdf".format(self.branch)), "convergence": self.local_target("convergence_{}.pdf".format(self.branch)) } if self.has_fitted_model(): collection["objective"] = self.local_target( "objective_{}.pdf".format(self.branch)) return law.SiblingFileCollection(collection)
def output(self): return law.SiblingFileCollection([ self.local_target("eta_phi_{}.png".format(i)) for i in range(self.n_events) ])
def cascade_output(self): n_trees = self.config_inst.get_aux("get_file_merging")( self.config_inst, "trees", self.dataset) return law.SiblingFileCollection([ self.wlcg_target("tree_{}.root".format(i)) for i in range(n_trees) ])
def cascade_output(self): return law.SiblingFileCollection( self.local_target("tuple_{}Of{}_n{}.root".format( i + 1, self.n_merged_files, self.n_events)) for i in range(self.n_merged_files) )