def __init__(self, n_inp=1, feats=[32, 64, 64, 128, 128, 256, 256], blocks=[2, 2, 2, 2, 2, 2, 2], n_pred_p=[1, 1, 1], n_pred_d=[4, 4, 4], L_output=[0, 1, 2], abn=1, dropout_ratio=0.0): super().__init__() self.relu = nn.ReLU(inplace=True) self.pixel_shuffle = nn.PixelShuffle(2) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.n_inp = n_inp if abn == 0: abnblock = ABN elif abn == 1: abnblock = InPlaceABN else: abnblock = InPlaceABNSync Conv3d_ABN.define_abn(abnblock) Bottleneck_ABN.define_abn(abnblock) self.strides = np.array([[1, 1, 1], [2, 2, 2], [4, 4, 4], [8, 8, 8], [16, 16, 16]]) for i in range(6): if i == 0: setattr(self, 'l' + str(i), build_layer(n_inp, feats[i], blocks[i])) setattr(self, 'r' + str(i), build_layer(feats[i], feats[i], blocks[i], skip=True)) else: setattr( self, 'l' + str(i), build_layer(feats[i - 1], feats[i], blocks[i], stride=2)) setattr(self, 'r' + str(i), build_layer(feats[i], feats[i], blocks[i], skip=True)) setattr(self, 'rt' + str(i), build_layer(feats[i], feats[i - 1], blocks[i])) self.r0 = Conv3d_ABN(feats[0], feats[0], kernel_size=3, padding=1) self.out_layer = nn.Conv3d(feats[0], 1, kernel_size=1, stride=1) self.drop_out = nn.Dropout3d(p=dropout_ratio) for c_out1, c_out2, out in zip(n_pred_p, n_pred_d, L_output): setattr(self, 'out' + str(out) + 'p', nn.Conv3d(feats[out], c_out1, kernel_size=3, padding=1)) outd = nn.Conv3d(feats[out], c_out2, kernel_size=3, padding=1) #outd.weight.data.fill_(0.0) outd.bias.data.fill_(0.0) setattr(self, 'out' + str(out) + 'd', outd) self.L_output = L_output self.strides = self.strides[np.array(L_output)]
def __init__(self, n_inp=1, feats=[32, 64, 64, 128, 128, 256, 256], blocks=[2, 2, 2, 2, 2, 2, 2], n_pred_p=[1, 1, 1], n_pred_d=[4, 4, 4], L_output=[0, 1, 2], abn=1, dropout_ratio=0.0): """ :param n_inp: 输入通道数量 [bs, n_inp, z, y, x] :param n_pred_p: 预测类别数量 [1,1,1] 二分类 :param n_pred_d: 预测位置信息 [4,4,4] 四个坐标值 :param feats: 通道数量 [32, 64, 64, 128, 128, 256, 256] :param blocks: residual block的数量 [2,2,2,2,2,2] :param L_output: 输出预测结果的层 [0, 1, 2] """ super().__init__() self.relu = nn.ReLU(inplace=True) self.pixel_shuffle = nn.PixelShuffle(2) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.n_inp = n_inp if abn == 0: abnblock = ABN elif abn == 1: abnblock = InPlaceABN else: abnblock = InPlaceABNSync Conv3d_ABN.define_abn(abnblock) Bottleneck_ABN.define_abn(abnblock) # not used self.strides = np.array([[1, 1, 1], [2, 2, 2], [4, 4, 4], [8, 8, 8], [16, 16, 16]]) # 6 stages for i in range(6): # input layer if i == 0: # 4 blocks # 3x3 * 3 setattr(self, 'l' + str(i), build_layer(n_inp, feats[i], blocks[i])) # 3x3 * 2 setattr(self, 'r' + str(i), build_layer(feats[i], feats[i], blocks[i], skip=True)) # other layers else: # 6 blocks # stride 2 downsample setattr( self, 'l' + str(i), build_layer(feats[i - 1], feats[i], blocks[i], stride=2)) setattr(self, 'r' + str(i), build_layer(feats[i], feats[i], blocks[i], skip=True)) # add after upsampled (keep dim with previous block) setattr(self, 'rt' + str(i), build_layer(feats[i], feats[i - 1], blocks[i])) self.r0 = Conv3d_ABN(feats[0], feats[0], kernel_size=3, padding=1) self.out_layer = nn.Conv3d(feats[0], 1, kernel_size=1, stride=1) self.drop_out = nn.Dropout3d(p=dropout_ratio) # 不同layer的预测类别和位置信息 for c_out1, c_out2, out in zip(n_pred_p, n_pred_d, L_output): # outp = build_layer(feats[out], feats[out] // 4, 0, skip=False) outp = nn.Conv3d(feats[out], feats[out], kernel_size=3, padding=1) setattr(self, 'before_out' + str(out) + 'p', outp) # outd = build_layer(feats[out], feats[out] // 4, 0, skip=False) outd = nn.Conv3d(feats[out], feats[out], kernel_size=3, padding=1) setattr(self, 'before_out' + str(out) + 'd', outd) for c_out1, c_out2, out in zip(n_pred_p, n_pred_d, L_output): setattr(self, 'out' + str(out) + 'p', nn.Conv3d(feats[out], c_out1, kernel_size=3, padding=1)) outd = nn.Conv3d(feats[out], c_out2, kernel_size=3, padding=1) # outd.weight.data.fill_(0.0) outd.bias.data.fill_(0.0) setattr(self, 'out' + str(out) + 'd', outd) self.L_output = L_output # not used self.strides = self.strides[np.array(L_output)]