コード例 #1
0
def test_020_matmul_builder_to_fail_weight_spec():
    """
    Objective:
        Verify the Matmul.build()
    Expected:
        build() parse the spec and fail with invalid weight configurations
    """
    profiler = cProfile.Profile()
    profiler.enable()

    for _ in range(NUM_MAX_TEST_TIMES):
        M = np.random.randint(1, 100)
        D = np.random.randint(1, 100)  # NOT including bias

        # ----------------------------------------------------------------------
        # Validate the correct specification.
        # NOTE: Invalidate one parameter at a time from the correct one.
        # Otherwise not sure what you are testing.
        # ----------------------------------------------------------------------
        valid_matmul_spec = {
            _NAME: "test_020_matmul_builder_to_fail_matmul_spec",
            _NUM_NODES: M,
            _NUM_FEATURES: D,
            _WEIGHTS: {
                _SCHEME: "he"
            }
        }
        try:
            Matmul.build(valid_matmul_spec)
        except Exception as e:
            raise RuntimeError("Matmul.build() must succeed with %s" %
                               valid_matmul_spec)

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_WEIGHTS][_SCHEME] = "invalid_scheme"
        try:
            Matmul.build(matmul_spec)
            raise RuntimeError(
                "Matmul.build() must fail with invalid weight scheme")
        except AssertionError:
            pass

    profiler.disable()
    profiler.print_stats(sort="cumtime")
コード例 #2
0
def disabled_test_020_matmul_round_trip():
    """
    TODO: Disabled as need to re-design numerical_jacobian for 32 bit float e.g TF.

    Objective:
        Verify the forward and backward paths at matmul.

    Expected:
        Forward path:
        1. Matmul function(X) == X @ W.T
        2. Numerical gradient should be the same with numerical Jacobian

        Backward path:
        3. Analytical gradient dL/dX == dY @ W
        4. Analytical dL/dW == X.T @ dY
        5. Analytical gradients are similar to the numerical gradient ones

        Gradient descent
        6. W is updated via the gradient descent.
        7. Objective L is decreasing via the gradient descent.

    """
    profiler = cProfile.Profile()
    profiler.enable()

    for _ in range(NUM_MAX_TEST_TIMES):
        # --------------------------------------------------------------------------------
        # Instantiate a Matmul layer
        # --------------------------------------------------------------------------------
        N: int = np.random.randint(1, NUM_MAX_BATCH_SIZE)
        M: int = np.random.randint(1, NUM_MAX_NODES)
        D: int = np.random.randint(1, NUM_MAX_FEATURES)
        W = weights.he(M, D + 1)
        name = "test_020_matmul_methods"

        def objective(X: np.ndarray) -> Union[float, np.ndarray]:
            """Dummy objective function to calculate the loss L"""
            return np.sum(X)

        # Test both static instantiation and build()
        if TYPE_FLOAT(np.random.uniform()) < 0.5:
            matmul = Matmul(name=name,
                            num_nodes=M,
                            W=W,
                            log_level=logging.DEBUG)
        else:
            matmul_spec = {
                _NAME: "test_020_matmul_builder_to_fail_matmul_spec",
                _NUM_NODES: M,
                _NUM_FEATURES: D,
                _WEIGHTS: {
                    _SCHEME: "he",
                },
                _OPTIMIZER: {
                    _SCHEME: "sGd"
                }
            }
            matmul = Matmul.build(matmul_spec)

        matmul.objective = objective

        # ================================================================================
        # Layer forward path
        # Calculate the layer output Y=f(X), and get the loss L = objective(Y)
        # Test the numerical gradient dL/dX=matmul.gradient_numerical().
        #
        # Note that bias columns are added inside the matmul layer instance, hence
        # matmul.X.shape is (N, 1+D), matmul.W.shape is (M, 1+D)
        # ================================================================================
        X = np.random.randn(N, D).astype(TYPE_FLOAT)
        Logger.debug("%s: X is \n%s", name, X)

        # pylint: disable=not-callable
        Y = matmul.function(X)
        # pylint: disable=not-callable
        L = matmul.objective(Y)

        # Constraint 1 : Matmul outputs Y should be [email protected]
        assert np.array_equal(Y, np.matmul(matmul.X, matmul.W.T))

        # Constraint 2: Numerical gradient should be the same with numerical Jacobian
        GN = matmul.gradient_numerical()  # [dL/dX, dL/dW]

        # DO NOT use matmul.function() as the objective function for numerical_jacobian().
        # The state of the layer will be modified.
        # LX = lambda x: matmul.objective(matmul.function(x))
        def LX(x):
            y = np.matmul(x, matmul.W.T)
            # pylint: disable=not-callable
            return matmul.objective(y)

        EGNX = numerical_jacobian(LX,
                                  matmul.X)  # Numerical dL/dX including bias
        EGNX = EGNX[::, 1::]  # Remove bias for dL/dX
        assert np.array_equal(GN[0], EGNX), \
            "GN[0]\n%s\nEGNX=\n%s\n" % (GN[0], EGNX)

        # DO NOT use matmul.function() as the objective function for numerical_jacobian().
        # The state of the layer will be modified.
        # LW = lambda w: matmul.objective(np.matmul(X, w.T))
        def LW(w):
            Y = np.matmul(matmul.X, w.T)
            # pylint: disable=not-callable
            return matmul.objective(Y)

        EGNW = numerical_jacobian(LW,
                                  matmul.W)  # Numerical dL/dW including bias
        assert np.array_equal(GN[1], EGNW)  # No need to remove bias

        # ================================================================================
        # Layer backward path
        # Calculate the analytical gradient dL/dX=matmul.gradient(dL/dY) with a dummy dL/dY.
        # ================================================================================
        dY = np.ones_like(Y)
        dX = matmul.gradient(dY)

        # Constraint 3: Matmul gradient dL/dX should be dL/dY @ W. Use a dummy dL/dY = 1.0.
        expected_dX = np.matmul(dY, matmul.W)
        expected_dX = expected_dX[::, 1::  # Omit bias
                                  ]
        assert np.array_equal(dX, expected_dX)

        # Constraint 5: Analytical gradient dL/dX close to the numerical gradient GN.
        assert np.all(np.abs(dX - GN[0]) < GRADIENT_DIFF_ACCEPTANCE_VALUE), \
            "dX need close to GN[0]. dX:\n%s\ndiff \n%s\n" % (dX, dX-GN[0])

        # --------------------------------------------------------------------------------
        # Gradient update.
        # Run the gradient descent to update Wn+1 = Wn - lr * dL/dX.
        # --------------------------------------------------------------------------------
        # Python passes the reference to W, hence it is directly updated by the gradient-
        # descent to avoid a temporary copy. Backup W before to compare before/after.
        backup = copy.deepcopy(W)

        # Gradient descent and returns analytical dL/dX, dL/dW
        dS = matmul.update()
        dW = dS[0]

        # Constraint 6.: W has been updated by the gradient descent.
        assert np.any(backup != matmul.W), "W has not been updated "

        # Constraint 5: the numerical gradient (dL/dX, dL/dW) are closer to the analytical ones.
        assert validate_against_expected_gradient(GN[0], dX), \
            "dX=\n%s\nGN[0]=\n%sdiff=\n%s\n" % (dX, GN[0], (dX-GN[0]))
        assert validate_against_expected_gradient(GN[1], dW), \
            "dW=\n%s\nGN[1]=\n%sdiff=\n%s\n" % (dW, GN[1], (dW-GN[1]))

        # Constraint 7: gradient descent progressing with the new objective L(Yn+1) < L(Yn)
        # pylint: disable=not-callable
        assert np.all(np.abs(objective(matmul.function(X)) < L))

    profiler.disable()
    profiler.print_stats(sort="cumtime")
コード例 #3
0
def test_020_matmul_builder_to_succeed():
    """
    Objective:
        Verify the Matmul.build()
    Expected:
        build() parse the spec and succeed
    """
    profiler = cProfile.Profile()
    profiler.enable()

    for _ in range(NUM_MAX_TEST_TIMES):
        M = np.random.randint(1, 100)
        D = np.random.randint(1, 100)  # NOT including bias

        # ----------------------------------------------------------------------
        # Validate the correct specification.
        # NOTE: Invalidate one parameter at a time from the correct one.
        # Otherwise not sure what you are testing.
        # ----------------------------------------------------------------------
        lr = TYPE_FLOAT(np.random.uniform())
        l2 = TYPE_FLOAT(np.random.uniform())
        valid_matmul_spec = {
            _NAME: "test_020_matmul_builder_to_fail_matmul_spec",
            _NUM_NODES: M,
            _NUM_FEATURES: D,
            _WEIGHTS: {
                _SCHEME: "he",
            },
            _OPTIMIZER: {
                _SCHEME: "sGd",
                _PARAMETERS: {
                    "lr": lr,
                    "l2": l2
                }
            }
        }
        try:
            matmul: Matmul = Matmul.build(valid_matmul_spec)
            assert matmul.optimizer.lr == lr
            assert matmul.optimizer.l2 == l2
        except Exception as e:
            raise RuntimeError("Matmul.build() must succeed with %s" %
                               valid_matmul_spec)

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_OPTIMIZER][_SCHEME] = "sgd"
        try:
            Matmul.build(valid_matmul_spec)
        except Exception as e:
            raise RuntimeError("Matmul.build() must succeed with %s" %
                               valid_matmul_spec)

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_OPTIMIZER][_SCHEME] = "SGD"
        try:
            Matmul.build(valid_matmul_spec)
        except Exception as e:
            raise RuntimeError("Matmul.build() must succeed with %s" %
                               valid_matmul_spec)

    profiler.disable()
    profiler.print_stats(sort="cumtime")
コード例 #4
0
def test_020_matmul_builder_to_fail_optimizer_spec():
    """
    Objective:
        Verify the Matmul.build()
    Expected:
        build() parse the spec and fail with invalid configurations
    """
    profiler = cProfile.Profile()
    profiler.enable()

    for _ in range(NUM_MAX_TEST_TIMES):
        M = np.random.randint(1, 100)
        D = np.random.randint(1, 100)  # NOT including bias

        # ----------------------------------------------------------------------
        # Validate the correct specification.
        # NOTE: Invalidate one parameter at a time from the correct one.
        # Otherwise not sure what you are testing.
        # ----------------------------------------------------------------------
        valid_matmul_spec = {
            _NAME: "test_020_matmul_builder_to_fail_matmul_spec",
            _NUM_NODES: M,
            _NUM_FEATURES: D,
            _WEIGHTS: {
                _SCHEME: "he"
            },
            _OPTIMIZER: {
                _SCHEME: "sGd",
                _PARAMETERS: {
                    "lr": TYPE_FLOAT(np.random.uniform()),
                    "l2": TYPE_FLOAT(np.random.uniform())
                }
            },
            "log_level": logging.ERROR
        }
        try:
            Matmul.build(valid_matmul_spec)
        except Exception as e:
            raise RuntimeError("Matmul.build() must succeed with %s" %
                               valid_matmul_spec)

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_OPTIMIZER] = ""
        try:
            Matmul.build(matmul_spec)
            raise RuntimeError(
                "Matmul.build() must fail with invalid optimizer spec")
        except AssertionError:
            pass

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_OPTIMIZER][_SCHEME] = "invalid"
        try:
            Matmul.build(matmul_spec)
            raise RuntimeError(
                "Matmul.build() must fail with invalid optimizer spec")
        except AssertionError:
            pass

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_OPTIMIZER][_PARAMETERS]["lr"] = np.random.uniform(-1, 0)
        try:
            Matmul.build(matmul_spec)
            raise RuntimeError(
                "Matmul.build() must fail with invalid lr value")
        except AssertionError:
            pass

        matmul_spec = copy.deepcopy(valid_matmul_spec)
        matmul_spec[_OPTIMIZER][_PARAMETERS]["l2"] = np.random.uniform(-1, 0)
        try:
            Matmul.build(matmul_spec)
            raise RuntimeError(
                "Matmul.build() must fail with invalid l2 value")
        except AssertionError:
            pass

    profiler.disable()
    profiler.print_stats(sort="cumtime")