コード例 #1
0
 def join_block(self, x, y, name):
     with tf.variable_scope(name):
         x_dim = x.get_shape().as_list()[1:3]
         scaled = tf.image.resize_images(
             y,
             x_dim[0],
             x_dim[1],
             method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
         x_norm = get_norm(x)
         y_norm = get_norm(scaled)
         return tf.concat(3, [x_norm, y_norm], name="concat")
コード例 #2
0
 def conv_block(self, bottom, n, S, stride, name, relu=True):
     """ conv -> bias -> (norm -> relu | nop) -> out """
     with tf.variable_scope(name):
         if n > 1 and self.is_training:
             pad = n // 2
             bottom = tf.pad(bottom,
                             [[0, 0], [pad, pad], [pad, pad], [0, 0]],
                             "REFLECT")
         C = bottom.get_shape().as_list()[-1]
         filt = self.get_conv_filter(n, C, S, name)
         if self.is_training:
             conv = tf.nn.conv2d(bottom,
                                 filt, [1, stride, stride, 1],
                                 padding='VALID')
         else:
             conv = tf.nn.conv2d(bottom,
                                 filt, [1, stride, stride, 1],
                                 padding='SAME')
         conv_biases = self.get_bias(name, S)
         bias = tf.nn.bias_add(conv, conv_biases)
         if relu:
             norm = get_norm(bias)
             return tf.nn.relu(norm)
         else:
             return bias
コード例 #3
0
 def deconv_block(self, bottom, n, S, stride, name):
     """ AKA convolutional transpose """        
     with tf.variable_scope(name):
         b, h, w, C = bottom.get_shape().as_list()
         filt = self.get_conv_filter(n, S, C, name)
         deconv = tf.nn.conv2d_transpose(bottom, filt, [b, h * stride, w * stride, S], [1, stride, stride, 1], padding='SAME')
         biases = self.get_bias(name, S)            
         bias = tf.nn.bias_add(deconv, biases)
         norm = get_norm(bias)
         return tf.nn.relu(norm)
コード例 #4
0
 def get_residual(self, bottom, name, S=3):
     with tf.variable_scope(name):
         _, _, _, C = bottom.get_shape().as_list()
         conv = self.conv_block(bottom, S, C, 1, "%s-a" % name)
         return bottom + get_norm(
             self.conv_block(conv, S, C, 1, "%s-b" % name, relu=False))