コード例 #1
0
def set_optimizer(args, model, train_steps=None):
    if args.warm_up:
        logging.info('using BertAdam')
        param_optimizer = list(model.named_parameters())
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=train_steps)
        return optimizer
    else:
        logging.info('using optim Adam')
        parameters_trainable = list(
            filter(lambda p: p.requires_grad, model.parameters()))
        optimizer = optim.Adam(parameters_trainable, lr=args.learning_rate)
    return optimizer
コード例 #2
0
ファイル: train.py プロジェクト: XingXingXudong/EaR
    def set_optimizer(self, args, model, train_steps=None):
        param_optimizer = list(model.named_parameters())
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
             'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=train_steps)
        return optimizer
コード例 #3
0
def train(data, save_model_dir, seg=True, debug=False):
    print("Training with {} model.".format(data.model_type))

    # data.show_data_summary()

    if data.bert_finetune:
        print('bert_finetune')
        model = BertNER(data)
    else:
        print('bert feature extraction')
        model = SeqModel(data)

    print("finish building model.")

    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optimizer = optim.Adamax(parameters, lr=data.HP_lr)

    if data.warm_up:
        print('using warm_up...')
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        num_train_optimization_steps = int(
            len(data.train_Ids) / data.HP_batch_size) * data.HP_iteration
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=data.HP_lr,
                             warmup=0.1,
                             t_total=num_train_optimization_steps)

    best_dev = -1
    best_dev_p = -1
    best_dev_r = -1

    best_test = -1
    best_test_p = -1
    best_test_r = -1

    ## start training
    for idx in range(data.HP_iteration):
        epoch_start = time.time()
        temp_start = epoch_start
        print(("Epoch: %s/%s" % (idx, data.HP_iteration)))
        if not data.warm_up:
            optimizer = lr_decay(optimizer, idx, data.HP_lr_decay, data.HP_lr)
        instance_count = 0
        sample_loss = 0
        batch_loss = 0
        total_loss = 0
        right_token = 0
        whole_token = 0
        random.shuffle(data.train_Ids)
        ## set model in train model
        model.train()
        model.zero_grad()
        batch_size = data.HP_batch_size
        batch_id = 0
        train_num = len(data.train_Ids)
        total_batch = train_num // batch_size + 1

        for batch_id in range(total_batch):
            start = batch_id * batch_size
            end = (batch_id + 1) * batch_size
            if end > train_num:
                end = train_num
            instance = data.train_Ids[start:end]
            words = data.train_texts[start:end]
            if not instance:
                continue

            batch_word, batch_biword, batch_wordlen, batch_label, mask, batch_bert, bert_mask = batchify_with_label(
                instance, data.HP_gpu)

            instance_count += 1
            loss, tag_seq = model.neg_log_likelihood_loss(
                batch_word, batch_biword, batch_wordlen, mask, batch_label,
                batch_bert, bert_mask)

            right, whole = predict_check(tag_seq, batch_label, mask)
            right_token += right
            whole_token += whole
            sample_loss += loss.data
            total_loss += loss.data
            batch_loss += loss

            if end % 500 == 0:
                temp_time = time.time()
                temp_cost = temp_time - temp_start
                temp_start = temp_time
                print((
                    "     Instance: %s; Time: %.2fs; loss: %.4f; acc: %s/%s=%.4f"
                    % (end, temp_cost, sample_loss, right_token, whole_token,
                       (right_token + 0.) / whole_token)))
                sys.stdout.flush()
                sample_loss = 0
            if end % data.HP_batch_size == 0:
                batch_loss.backward()
                optimizer.step()
                model.zero_grad()
                batch_loss = 0
            if debug:
                break

        temp_time = time.time()
        temp_cost = temp_time - temp_start
        print(("     Instance: %s; Time: %.2fs; loss: %.4f; acc: %s/%s=%.4f" %
               (end, temp_cost, sample_loss, right_token, whole_token,
                (right_token + 0.) / whole_token)))
        epoch_finish = time.time()
        epoch_cost = epoch_finish - epoch_start
        print((
            "Epoch: %s training finished. Time: %.2fs, speed: %.2fst/s,  total loss: %s"
            % (idx, epoch_cost, train_num / epoch_cost, total_loss)))

        speed, acc, p, r, f, pred_labels = evaluate(data, model, "dev")
        dev_finish = time.time()
        dev_cost = dev_finish - epoch_finish

        if seg:
            current_score = f
            print((
                "Dev: time: %.2fs, speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"
                % (dev_cost, speed, acc, p, r, f)))
        else:
            current_score = acc
            print(("Dev: time: %.2fs speed: %.2fst/s; acc: %.4f" %
                   (dev_cost, speed, acc)))

        if current_score > best_dev:
            if seg:
                print("Exceed previous best f score:", best_dev)

            else:
                print("Exceed previous best acc score:", best_dev)

            model_name = save_model_dir
            torch.save(model.state_dict(), model_name)
            # best_dev = current_score
            best_dev_p = p
            best_dev_r = r

        # ## decode test
        speed, acc, p, r, f, pred_labels = evaluate(data, model, "test")
        test_finish = time.time()
        test_cost = test_finish - dev_finish
        if seg:
            current_test_score = f
            print((
                "Test: time: %.2fs, speed: %.2fst/s; acc: %.4f, p: %.4f, r: %.4f, f: %.4f"
                % (test_cost, speed, acc, p, r, f)))
        else:
            current_test_score = acc
            print(("Test: time: %.2fs, speed: %.2fst/s; acc: %.4f" %
                   (test_cost, speed, acc)))

        if current_score > best_dev:
            best_dev = current_score
            best_test = current_test_score
            best_test_p = p
            best_test_r = r

        print("Best dev score: p:{}, r:{}, f:{}".format(
            best_dev_p, best_dev_r, best_dev))
        print("Test score: p:{}, r:{}, f:{}".format(best_test_p, best_test_r,
                                                    best_test))
        gc.collect()

    with open(data.result_file, "a") as f:
        f.write(save_model_dir + '\n')
        f.write("Best dev score: p:{}, r:{}, f:{}\n".format(
            best_dev_p, best_dev_r, best_dev))
        f.write("Test score: p:{}, r:{}, f:{}\n\n".format(
            best_test_p, best_test_r, best_test))
        f.close()