コード例 #1
0
class LinearDecoder(Decoder):
    """
    MLP Decoder for Hyperbolic/Euclidean node classification models.
    """
    def __init__(self, c, args):
        super(LinearDecoder, self).__init__(c)
        self.manifold = getattr(manifolds, args.manifold)()
        self.input_dim = args.dim
        self.output_dim = args.n_classes
        self.bias = args.bias
        self.cls = Linear(self.input_dim, self.output_dim, args.dropout,
                          lambda x: x, self.bias)
        self.decode_adj = False

    def decode(self, x, adj):
        h = self.manifold.proj_tan0(self.manifold.logmap0(x, c=self.c),
                                    c=self.c)
        return super(LinearDecoder, self).decode(h, adj)

    def extra_repr(self):
        return 'in_features={}, out_features={}, bias={}, c={}'.format(
            self.input_dim, self.output_dim, self.bias, self.c)

    def reset_parameters(self):
        self.cls.reset_parameters()
        print('GNN classification decoder reset finished')
コード例 #2
0
 def __init__(self, c, args):
     super(LinearDecoder, self).__init__(c)
     self.manifold = getattr(manifolds, args.manifold)()
     self.input_dim = args.dim
     self.output_dim = args.n_classes
     self.bias = args.bias
     self.cls = Linear(self.input_dim, self.output_dim, args.dropout,
                       lambda x: x, self.bias)
     self.decode_adj = False
コード例 #3
0
 def __init__(self, c, args):
     super(Shallow, self).__init__(c)
     self.manifold = getattr(manifolds, args.manifold)()
     self.use_feats = args.use_feats
     weights = torch.Tensor(args.n_nodes, args.dim)
     if not args.pretrained_embeddings:
         weights = self.manifold.init_weights(weights, self.c)
         trainable = True
     else:
         weights = torch.Tensor(np.load(args.pretrained_embeddings))
         assert weights.shape[
             0] == args.n_nodes, "The embeddings you passed seem to be for another dataset."
         trainable = False
     self.lt = manifolds.ManifoldParameter(weights, trainable,
                                           self.manifold, self.c)
     self.all_nodes = torch.LongTensor(list(range(args.n_nodes)))
     layers = []
     if args.pretrained_embeddings is not None and args.num_layers > 0:
         # MLP layers after pre-trained embeddings
         dims, acts = get_dim_act(args)
         if self.use_feats:
             dims[0] = args.feat_dim + weights.shape[1]
         else:
             dims[0] = weights.shape[1]
         for i in range(len(dims) - 1):
             in_dim, out_dim = dims[i], dims[i + 1]
             act = acts[i]
             layers.append(
                 Linear(in_dim, out_dim, args.dropout, act, args.bias))
     self.layers = nn.Sequential(*layers)
     self.encode_graph = False
コード例 #4
0
 def __init__(self, c, args):
     super(LinearDecoder, self).__init__(c)
     if args.manifold == 'MixedCurvature':
         self.manifold = getattr(manifolds, args.manifold)(args.split_idx)
     else:
         self.manifold = getattr(manifolds, args.manifold)()
     self.input_dim = args.dim
     self.output_dim = args.n_classes
     self.bias = args.bias
     self.cls = Linear(self.input_dim, self.output_dim, args.dropout, lambda x: x, self.bias)
     self.decode_adj = False
コード例 #5
0
 def __init__(self, c, args):
     super(MLP, self).__init__(c)
     assert args.num_layers > 0
     dims, acts = get_dim_act(args)
     layers = []
     for i in range(len(dims) - 1):
         in_dim, out_dim = dims[i], dims[i + 1]
         act = acts[i]
         layers.append(Linear(in_dim, out_dim, args.dropout, act, args.bias))
     self.layers = nn.Sequential(*layers)
     self.encode_graph = False
コード例 #6
0
ファイル: decoders.py プロジェクト: marlin-github/HGCAE
    def __init__(self, c, args, task):
        super(HGCAEDecoder, self).__init__(c)
        self.manifold = getattr(manifolds, args.manifold)()
        if task == 'nc':
            self.input_dim = args.dim
            self.output_dim = args.n_classes
            self.bias = args.bias
            self.classifier = Linear(self.input_dim, self.output_dim, args.dropout, lambda x: x, self.bias)
            self.decode_adj = False

        elif task == 'rec':
            assert args.num_layers > 0

            dims, acts, _ = hyp_layers.get_dim_act_curv(args)
            dims = dims[::-1]
            acts = acts[::-1][:-1] + [lambda x: x] # Last layer without act
            self.curvatures = self.c[::-1]

            encdec_share_curvature = False
            if not encdec_share_curvature and args.num_layers == args.num_dec_layers: # do not share and enc-dec mirror-shape
                num_c = len(self.curvatures)
                self.curvatures = self.curvatures[:1] 
                if args.c_trainable == 1:
                    self.curvatures += [nn.Parameter(torch.Tensor([args.c]).to(args.device))] * (num_c - 1)
                else:
                    self.curvatures += [torch.tensor([args.c])] * (num_c - 1)
                    if not args.cuda == -1:
                        self.curvatures = [curv.to(args.device) for curv in self.curvatures]


            self.curvatures = self.curvatures[:-1] + [None]


            hgc_layers = []
            num_dec_layers = args.num_dec_layers
            for i in range(num_dec_layers):
                c_in, c_out = self.curvatures[i], self.curvatures[i + 1]
                in_dim, out_dim = dims[i], dims[i + 1]
                act = acts[i]
                hgc_layers.append(
                    hyp_layers.HyperbolicGraphConvolution(
                            self.manifold, in_dim, out_dim, c_in, c_out, args.dropout, act, args.bias, args.use_att,
                            att_type=args.att_type, att_logit=args.att_logit, beta=args.beta, decode=True
                    )
                )

            self.decoder = nn.Sequential(*hgc_layers)
            self.decode_adj = True
        else:
            raise RuntimeError('Unknown task')
コード例 #7
0
ファイル: decoders.py プロジェクト: marlin-github/HGCAE
    def __init__(self, c, args, task):
        super(HNNDecoder, self).__init__(c)
        self.manifold = getattr(manifolds, args.manifold)()



        if not args.cuda == -1:
            c = torch.Tensor([c]).to(args.device)

        if task == 'nc':
            self.input_dim = args.dim
            self.output_dim = args.n_classes
            self.bias = args.bias
            self.classifier = Linear(self.input_dim, self.output_dim, args.dropout, lambda x: x, self.bias)
            self.decode_adj = False

        elif task == 'rec':
            assert args.num_layers > 0

            dims, acts, _ = hyp_layers.get_dim_act_curv(args)
            dims = dims[::-1]
            acts = acts[::-1][:-1] + [lambda x: x] # Last layer without act

            encdec_share_curvature = False

            hnn_layers = []
            num_dec_layers = args.num_dec_layers
            for i in range(num_dec_layers):
                in_dim, out_dim = dims[i], dims[i + 1]
                act = acts[i]
                c_in = c
                c_out = None if (i == num_dec_layers - 1) else c

                hnn_layers.append(
                    hyp_layers.HNNLayer(
                            self.manifold, in_dim, out_dim, c_in, c_out, args.dropout, act, args.bias
                    )
                )

            self.decoder = nn.Sequential(*hnn_layers)
            self.decode_adj = False
        else:
            raise RuntimeError('Unknown task')
コード例 #8
0
 def __init__(self, c, args):
     super(Shallow, self).__init__(c)
     self.manifold = getattr(manifolds, args.manifold)()
     self.use_feats = args.use_feats
     self.pretrained_embeddings = args.pretrained_embeddings
     self.n_nodes = args.n_nodes
     self.weights = torch.Tensor(args.n_nodes, args.dim)
     layers = []
     if args.pretrained_embeddings is not None and args.num_layers > 0:
         # MLP layers after pre-trained embeddings
         dims, acts = get_dim_act(args)
         if self.use_feats:
             dims[0] = args.feat_dim + self.weights.shape[1]
         else:
             dims[0] = self.weights.shape[1]
         for i in range(len(dims) - 1):
             in_dim, out_dim = dims[i], dims[i + 1]
             act = acts[i]
             layers.append(
                 Linear(in_dim, out_dim, args.dropout, act, args.bias))
     self.layers = nn.Sequential(*layers)
     self.reset_parameteres()
     self.encode_graph = False