コード例 #1
0
 def contextual_embedding(self):
     """
     contextual embedding
     :return:
     """
     with tf.variable_scope('paragraph_encoding'):
         self.h = rnn(self.x_embed, self.hidden_size, self.x_length)
     with tf.variable_scope('question_enconding'):
         self.u = rnn(self.q_embed, self.hidden_size, self.q_length)
     if self.use_dropout:
         self.h = tf.nn.dropout(self.h, self.dropout_keep_prob)
         self.u = tf.nn.dropout(self.u, self.dropout_keep_prob)
コード例 #2
0
 def encode(self):
     with tf.variable_scope("passage_encoding"):
         self.u_p = rnn('gru',
                        self.p_embed,
                        self.hidden_size,
                        self.p_length,
                        layer_num=1)
     with tf.variable_scope("question_encoding"):
         self.u_q = rnn('gru',
                        self.q_embed,
                        self.hidden_size,
                        self.q_length,
                        layer_num=1)
     if self.use_dropout:
         self.u_p = tf.nn.dropout(self.u_p, self.dropout_keep_prob)
         self.u_q = tf.nn.dropout(self.u_q, self.dropout_keep_prob)
コード例 #3
0
ファイル: model.py プロジェクト: colinsongf/BIDAF-multi_gpu
 def output(self):
     self.p1 = linear(self.hidden_size * 10, self.g, self.m, '1')
     with tf.variable_scope("output_rnn"):
         m_ = rnn('lstm',
                  self.m,
                  self.hidden_size,
                  self.x_length,
                  layer_num=1)
     self.p2 = linear(self.hidden_size * 10, self.g, m_, '2')
コード例 #4
0
ファイル: model.py プロジェクト: colinsongf/BIDAF-multi_gpu
 def modeling(self):
     with tf.variable_scope("modeling"):
         self.m = rnn('lstm',
                      self.g,
                      self.hidden_size,
                      self.x_length,
                      layer_num=1)
     if self.use_dropout:
         self.m = tf.nn.dropout(self.m, self.dropout_keep_prob)
コード例 #5
0
 def output_layer(self):
     params = [([self.params["w_h_p"],
                 self.params["w_h_a"]], self.params["v"]),
               ([self.params["w_u_q_"],
                 self.params["w_v_q"]], self.params["v"])]
     with tf.variable_scope("output_layer"):
         self.h_p = self.h_p + rnn("gru",
                                   self.h_p,
                                   self.hidden_size,
                                   self.p_length,
                                   dropout_keep_prob=self.dropout_keep_prob)
     self.p1, self.p2 = answer_pointer(self.h_p, self.p_length, self.u_q,
                                       self.q_length, self.hidden_size,
                                       params, self.batch_size)