def deconvLayer(self,kernel,outchn,stride=1,pad='SAME',activation=-1,batch_norm=False): self.result = L.deconv2D(self.result,kernel,outchn,'deconv_'+str(self.layernum),stride=stride,pad=pad) if batch_norm: self.result = L.batch_norm(self.result,'batch_norm_'+str(self.layernum),training=self.bntraining,epsilon=self.epsilon) self.layernum+=1 self.inpsize = self.result.get_shape().as_list() self.activate(activation) return self.result
def deconvLayer(self, kernel, outchn, stride=1, pad='SAME', activation=-1, batch_norm=False): self.result = L.deconv2D(self.result, kernel, outchn, 'deconv_' + str(self.layernum), stride=stride, pad=pad) if batch_norm: self.result = L.batch_norm(self.result, 'batch_norm_' + str(self.layernum)) self.layernum += 1 self.inpsize[1] *= stride self.inpsize[2] *= stride self.inpsize[3] = outchn self.activate(activation) return [self.result, list(self.inpsize)]