コード例 #1
0
    def eval_log_density(self, hsamp, buffers=(0, 1), for_eval=False):

        batch_size = self.batch_size
        n_samples = hsamp.shape[0] // batch_size
        if for_eval:
            batch_size = hsamp.shape[0]
            n_samples = 1

        sample_output = T.concatenate(
            (T.zeros(hsamp[:, :1].shape), hsamp[:, :-1]), axis=1)
        sample_output = T.reshape(
            sample_output, [sample_output.shape[0], sample_output.shape[1], 1])

        conv_output = T.repeat(self.conv_output, n_samples, axis=0)
        trace_output = T.repeat(self.trace_output, n_samples, axis=0)

        gru_inp = T.concatenate([conv_output, trace_output], axis=2)

        if self.forw_backw:
            back_output = T.repeat(self.back_output, n_samples, axis=0)
            gru_inp = T.concatenate([gru_inp, back_output], axis=2)

        gru_inp = T.concatenate([gru_inp, sample_output], axis=2)
        rnn_t = ll.get_output(self.gru_layer,
                              inputs={
                                  self.gru_layer_inp:
                                  gru_inp,
                                  self.init_rnn_forw_layer:
                                  self.init_rnn_forw.repeat(
                                      hsamp.shape[0] //
                                      self.init_rnn_forw.shape[0], 0)
                              })

        rnn_flat = T.concatenate([gru_inp[:, :, :-2], rnn_t], axis=2)
        rnn_flat = rnn_flat.reshape([-1, rnn_flat.shape[-1]])

        prob = self.p_layer.get_output_for(rnn_flat)
        prob = T.clip(prob, 0.001, 0.999)
        prob = prob.reshape([batch_size, n_samples, -1])

        hsamp = hsamp.reshape((batch_size, n_samples, -1))

        log_density = -clipped_binary_crossentropy(
            prob, hsamp)[:, :, buffers[0]:-buffers[1]].sum(axis=-1)

        if self.n_genparams and not for_eval:
            gen_mu = self.gen_mu_layer.get_output_for(rnn_t.dimshuffle(
                1, 0, 2)).mean(0)
            gen_sig = self.gen_sig_layer.get_output_for(
                rnn_t.dimshuffle(1, 0, 2)).mean(0)

            p_logl = -0.5 * (T.log(2 * np.pi) + 2 * T.log(gen_sig) +
                             ((self.P - gen_mu) / gen_sig)**2)
            p_logl = p_logl.reshape((batch_size, n_samples))

            log_density = log_density + p_logl

        return log_density
コード例 #2
0
    def __init__(self, RecognitionParams, Input, rng, n_samples=1):
        '''
        h = Q_phi(z|x), where phi are parameters, z is our latent class, and x are data
        '''
        super().__init__(Input, rng, n_samples)
        self.NN = RecognitionParams['network']

        self.p = ll.get_output(self.NN, inputs=self.Input)
        self.p_det = ll.get_output(self.NN,
                                   inputs=self.Input,
                                   deterministic=True)
        sample = srng.binomial(self.p.shape,
                               n=1,
                               p=self.p,
                               dtype=theano.config.floatX)

        self.recfunc = theano.function([self.Input], self.p)
        self.detfunc = theano.function([self.Input], self.p_det)
        self.dualfunc = theano.function([self.Input], outputs=[self.p, sample])
コード例 #3
0
    def __init__(self, recognition_params, X, S, P, rng, batch_size=1):
        """
        Factorized posterior using just the convolutional network
        """
        super().__init__(recognition_params, X, S, P, rng, batch_size)
        self.NN = recognition_params['network']

        self.p = ll.get_output(self.NN, inputs=self.X)
        sample = srng.binomial(self.p.shape,
                               n=1,
                               p=self.p,
                               dtype=theano.config.floatX)

        self.recfunc = theano.function([self.X],
                                       outputs={
                                           'Probs': self.p,
                                           'Spikes': sample
                                       })
コード例 #4
0
    def __init__(self, recognition_params, X, S, P, rng, batch_size=1):

        super().__init__(recognition_params, X, S, P, rng, batch_size)
        ret_dict = {}

        self.n_units = recognition_params['rnn_units']
        self.n_convfeatures = recognition_params['n_features']

        self.init_rnn_forw = theano.shared(
            np.zeros([1, self.n_units]).astype(config.floatX))
        self.init_rnn_back = theano.shared(
            np.zeros([1, self.n_units]).astype(config.floatX))

        n_inputs = self.n_convfeatures + 1 + 1 + self.n_units * int(
            self.forw_backw)

        self.conv_layer = recognition_params['network']
        self.conv_output = ll.get_output(self.conv_layer, inputs=self.X)

        x_inp = recognition_params['input']
        x_inp.input_var = self.X
        trace_layer = ll.DimshuffleLayer(x_inp, (0, 1, 'x'))
        self.trace_output = ll.get_output(trace_layer)

        gru_cell_inp = ll.InputLayer((None, n_inputs))
        self.init_rnn_forw_layer = ll.InputLayer(
            (None, self.n_units),
            input_var=self.init_rnn_forw.repeat(
                self.X.shape[0] // self.init_rnn_forw.shape[0], 0))
        self.gru_layer_inp = ll.InputLayer((None, None, n_inputs))
        self.gru_cell = ll.GRUCell(gru_cell_inp,
                                   self.n_units,
                                   grad_clipping=10.,
                                   name='forw_rnn',
                                   hid_init=self.init_rnn_forw_layer)
        self.gru_layer = ll.RecurrentContainerLayer(
            {gru_cell_inp: self.gru_layer_inp}, self.gru_cell['output'])
        self.p_layer = ll.DenseLayer(
            (None, self.n_units + n_inputs - 2),
            1,
            nonlinearity=lasagne.nonlinearities.sigmoid,
            b=lasagne.init.Constant(-5.),
            name='dense_output')

        hid_0 = self.init_rnn_forw.repeat(
            self.X.shape[0] // self.init_rnn_forw.shape[0], 0)
        samp_0 = T.zeros([self.X.shape[0], 1])

        scan_inp = T.concatenate([self.conv_output, self.trace_output], axis=2)

        if self.forw_backw:
            inp_back = ll.ConcatLayer([self.conv_layer, trace_layer], axis=2)
            init_rnn_back_layer = ll.InputLayer(
                (None, self.n_units),
                input_var=self.init_rnn_back.repeat(
                    self.X.shape[0] // self.init_rnn_back.shape[0], 0))
            self.back_layer = ll.GRULayer(inp_back,
                                          self.n_units,
                                          backwards=True,
                                          name='back_rnn',
                                          hid_init=init_rnn_back_layer)
            self.back_output = ll.get_output(self.back_layer)

            scan_inp = T.concatenate([scan_inp, self.back_output], axis=2)

        def sample_step(scan_inp_, hid_tm1, samp_tm1):

            cell_in = T.concatenate([scan_inp_, samp_tm1], axis=1)
            rnn_t_ = self.gru_cell.get_output_for({
                'input': cell_in,
                'output': hid_tm1
            })
            prob_in = T.concatenate([cell_in[:, :-2], rnn_t_['output']],
                                    axis=1)
            prob_t = self.p_layer.get_output_for(prob_in)
            samp_t = srng.binomial(prob_t.shape,
                                   n=1,
                                   p=prob_t,
                                   dtype=theano.config.floatX)

            return rnn_t_['output'], samp_t, prob_t

        ((rnn_t, s_t, p_t), updates) = \
            theano.scan(fn=sample_step,
                        sequences=[scan_inp.dimshuffle(1, 0, 2)],  # Scan iterates over first dimension, so we have to put time in front.
                        outputs_info = [hid_0, samp_0, None, ])

        ret_dict['Probs'] = p_t[:, :, 0].T
        ret_dict['Spikes'] = s_t[:, :, 0].T

        if self.n_genparams:
            self.gen_mu_layer = ll.DenseLayer(
                (None, None, self.n_units),
                self.n_genparams,
                nonlinearity=lasagne.nonlinearities.linear,
                W=lasagne.init.Normal(std=0.01, mean=0.0),
                num_leading_axes=2,
                name='dense_gen_mu')
            self.gen_sig_layer = ll.DenseLayer(
                (None, None, self.n_units),
                self.n_genparams,
                nonlinearity=lasagne.nonlinearities.softplus,
                W=lasagne.init.Normal(std=0.01, mean=-0.0),
                b=lasagne.init.Constant(-2.),
                num_leading_axes=2,
                name='dense_gen_sig')

            ret_dict['Gen_mu'] = self.gen_mu_layer.get_output_for(rnn_t).mean(
                0)
            ret_dict['Gen_sig'] = self.gen_sig_layer.get_output_for(
                rnn_t).mean(0)

        self.recfunc = theano.function([self.X],
                                       outputs=ret_dict,
                                       updates=updates,
                                       on_unused_input='ignore')
コード例 #5
0
    def __init__(self, RecognitionParams, Input, rng, n_samples=1):
        '''
        h = Q_phi(z|x), where phi are parameters, z is our latent class, and x are data
        '''
        super().__init__(Input, rng, n_samples)
        self.n_units = RecognitionParams['rnn_units']
        self.n_convfeatures = RecognitionParams['n_features']

        self.conv_back = RecognitionParams['network']

        conv_cell = RecognitionParams['network']
        conv_cell = ll.DimshuffleLayer(conv_cell, (1, 0, 2))
        self.conv_cell = ll.get_output(conv_cell, inputs=self.Input)

        inp_cell = RecognitionParams['input']
        inp_cell = ll.DimshuffleLayer(inp_cell, (1, 0, 'x'))
        self.inp_cell = ll.get_output(inp_cell, inputs=self.Input)

        inp_back = RecognitionParams['input']
        inp_back = ll.DimshuffleLayer(inp_back, (0, 1, 'x'))
        inp_back = ll.ConcatLayer([self.conv_back, inp_back], axis=2)

        cell_inp = ll.InputLayer(
            (None, self.n_convfeatures + self.n_units + 1 + 1 + 1))
        self.cell = rec.GRUCell(cell_inp, self.n_units, grad_clipping=100.)
        self.p_out = ll.DenseLayer((None, self.n_units + self.n_convfeatures),
                                   1,
                                   nonlinearity=lasagne.nonlinearities.sigmoid,
                                   b=lasagne.init.Constant(-3.))

        hid_0 = T.zeros([self.Input.shape[0], self.n_units])
        samp_0 = T.zeros([self.Input.shape[0], 1])

        self.back_nn = rec.GRULayer(inp_back, self.n_units, backwards=True)
        self.back_nn = ll.DimshuffleLayer(self.back_nn, (1, 0, 2))
        self.backward = ll.get_output(self.back_nn, inputs=self.Input)

        def sampleStep(conv_cell, inp_cell, back, hid_tm1, samp_tm1, prob_tm1):

            cell_in = T.concatenate(
                [conv_cell, inp_cell, back, samp_tm1, prob_tm1], axis=1)
            rnn_t = self.cell.get_output_for({
                'input': cell_in,
                'output': hid_tm1
            })
            prob_in = T.concatenate([conv_cell, rnn_t['output']], axis=1)
            prob_t = self.p_out.get_output_for(prob_in)
            samp_t = srng.binomial(prob_t.shape,
                                   n=1,
                                   p=prob_t,
                                   dtype=theano.config.floatX)

            return rnn_t['output'], samp_t, prob_t

        ((rnn_temp,s_t, p_t), updates) =\
            theano.scan(fn=sampleStep,
                        sequences=[self.conv_cell,self.inp_cell, self.backward],
                         #                         outputs_info=[T.unbroadcast(hid_0,1), T.unbroadcast(samp_0,1), T.unbroadcast(samp_0,1)])
                        outputs_info=[hid_0, samp_0, samp_0])

        for k, v in updates.items():
            k.default_update = v

        self.recfunc = theano.function([self.Input],
                                       outputs=p_t[:, :, 0].T,
                                       updates=updates)
        self.samplefunc = theano.function([self.Input],
                                          outputs=s_t[:, :, 0].T,
                                          updates=updates)
        self.dualfunc = theano.function(
            [self.Input],
            outputs=[p_t[:, :, 0].T, s_t[:, :, 0].T],
            updates=updates)
        self.detfunc = self.recfunc