コード例 #1
0
def image_transform_net(img_width, img_height, tv_weight=1):

    x = Input(shape=(img_width, img_height, 3), name='itn_input')
    a = InputNormalize(name='itn_input_norm')(x)
    a = ReflectionPadding2D(padding=(40, 40),
                            input_shape=(img_width, img_height, 3),
                            name='itn_reflectpad')(a)

    a = Conv2D(32, (9, 9), strides=1, padding='same', name='conv_1')(a)
    a = BatchNormalization(name='batch_norm_1')(a)
    a = Activation('relu', name='act_1')(a)

    a = Conv2D(64, (3, 3), strides=2, padding='same', name='conv_2')(a)
    a = BatchNormalization(name='batch_norm_2')(a)
    a = Activation('relu', name='act_2')(a)

    a = Conv2D(128, (3, 3), strides=2, padding='same', name='conv_3')(a)
    a = BatchNormalization(name='batch_norm_3')(a)
    a = Activation('relu', name='act_3')(a)

    # Residual 1
    a = res_conv(128, 3, 3)(a)

    # Residual 2
    a = res_conv(128, 3, 3)(a)

    # Residual 3
    a = res_conv(128, 3, 3)(a)

    # Residual 4
    a = res_conv(128, 3, 3)(a)

    # Residual 5
    a = res_conv(128, 3, 3)(a)

    a = Conv2DTranspose(64, (3, 3), strides=2, padding='same',
                        name='conv_4')(a)
    a = BatchNormalization(name='batch_norm_4')(a)
    a = Activation('relu', name='act_4')(a)

    a = Conv2DTranspose(32, (3, 3), strides=2, padding='same',
                        name='conv_5')(a)
    a = BatchNormalization(name='batch_norm_5')(a)
    a = Activation('relu', name='act_5')(a)

    a = Conv2D(3, (9, 9), strides=1, padding='same', name='conv_6')(a)
    a = BatchNormalization(name='batch_norm_6')(a)
    a = Activation('tanh', name='act_6')(a)  #output_image
    # Scale output to range [0, 255] via custom Denormalize layer
    y_hat = Scale_tanh(name='transform_output')(a)

    itn_model = Model(inputs=x, outputs=y_hat)
    #itn_model.load_weights('wave_crop_weights.h5', by_name=True)
    #print(model.output.shape)
    add_total_variation_loss(itn_model.layers[-1], tv_weight)
    return itn_model
コード例 #2
0
 def _get_model(self):
     x = tf.keras.Input(shape=(None, None, 3))
     a = InputNormalize()(x)
     #a = ReflectionPadding2D(padding=(40,40),input_shape=(img_width,img_height,3))(a)
     a = conv_bn_relu(8, 9, 9, stride=(1, 1))(a)
     a = conv_bn_relu(16, 3, 3, stride=(2, 2))(a)
     a = conv_bn_relu(32, 3, 3, stride=(2, 2))(a)
     for i in range(2):
         a = res_conv(32, 3, 3)(a)
     a = dconv_bn_nolinear(16, 3, 3)(a)
     a = dconv_bn_nolinear(8, 3, 3)(a)
     a = dconv_bn_nolinear(3, 9, 9, stride=(1, 1), activation="tanh")(a)
     # Scale output to range [0, 255] via custom Denormalize layer
     y = Denormalize(name='transform_output')(a)
     return tf.keras.Model(x, y, name="transformnet")
コード例 #3
0
def image_transform_net(img_width, img_height, tv_weight=1):
    x = Input(shape=(img_width, img_height, 3), name="input")
    a = layers.InputNormalize()(x)
    a = layers.ReflectionPadding2D(padding=(40, 40),
                                   input_shape=(img_width, img_height, 3))(a)
    a = layers.conv_bn_relu(32, 9, 9, stride=(1, 1))(a)
    a = layers.conv_bn_relu(64, 9, 9, stride=(2, 2))(a)
    a = layers.conv_bn_relu(128, 3, 3, stride=(2, 2))(a)
    for _ in range(5):
        a = layers.res_conv(128, 3, 3)(a)
    a = layers.dconv_bn_nolinear(64, 3, 3)(a)
    a = layers.dconv_bn_nolinear(64, 3, 3)(a)
    a = layers.conv_bn_relu(3, 9, 9, stride=(1, 1), relu=False)(a)
    y = layers.Denormalize(name='transform_output')(a)
    model = Model(inputs=x, outputs=y)
    if tv_weight > 0:
        add_total_variation_loss(model.layers[-1], tv_weight)
    return model
コード例 #4
0
ファイル: nets.py プロジェクト: mshinoda88/style_transfer
def image_transform_net(img_width,img_height,tv_weight=1):
    x = Input(shape=(img_width,img_height,3))
    a = InputNormalize()(x)
    a = ReflectionPadding2D(padding=(40,40),input_shape=(img_width,img_height,3))(a)
    a = conv_bn_relu(32, 9, 9, stride=(1,1))(a)
    a = conv_bn_relu(64, 9, 9, stride=(2,2))(a)
    a = conv_bn_relu(128, 3, 3, stride=(2,2))(a)
    for i in range(5):
        a = res_conv(128,3,3)(a)
    a = dconv_bn_nolinear(64,3,3)(a)
    a = dconv_bn_nolinear(32,3,3)(a)
    a = dconv_bn_nolinear(3,9,9,stride=(1,1),activation="tanh")(a)
    # Scale output to range [0, 255] via custom Denormalize layer
    y = Denormalize(name='transform_output')(a)
    
    model = Model(inputs=x, outputs=y)
    
    if tv_weight > 0:
        add_total_variation_loss(model.layers[-1],tv_weight)
        
    return model 
コード例 #5
0
def image_transform_net(img_width, img_height, tv_weight=1):
    """
        Image tranform
        network model.
    """
    # Input layer as an RGB image
    x = Input(shape=(img_width, img_height, 3))

    # Normalize input image
    a = InputNormalize()(x)

    # Pad image
    a = ReflectionPadding2D(padding=(40, 40),
                            input_shape=(img_width, img_height, 3))(a)

    # Extract feature maps
    a = conv_bn_relu(32, 9, 9, stride=(1, 1))(a)
    a = conv_bn_relu(64, 3, 3,
                     stride=(2, 2))(a)  # The previous kernel size was 9x9
    a = conv_bn_relu(128, 3, 3, stride=(2, 2))(a)
    for _ in range(5):
        a = res_conv(128, 3, 3)(a)
    a = dconv_bn_nolinear(64, 3, 3)(a)
    a = dconv_bn_nolinear(32, 3, 3)(a)
    a = dconv_bn_nolinear(3, 9, 9, stride=(1, 1), activation="tanh")(a)

    # Scale output to range [0, 255] via custom Denormalize layer
    y = Denormalize(name='transform_output')(a)

    # Create model
    model = Model(inputs=x, outputs=y)

    # Total variation regularizer
    if tv_weight > 0:
        add_total_variation_loss(model.layers[-1], tv_weight)

    return model