コード例 #1
0
    def Process(inputs, value, type='up'):
        if type == 'up':
            x = L.UpSampling2D()(inputs[0])
            add = wBiFPNAdd(name='bifpn-add-{0}-{1}'.format(index, value))(
                [x, inputs[1]])

        if type == 'max':
            x = L.MaxPooling2D(pool_size=3, strides=2,
                               padding='same')(inputs[0])
            add = wBiFPNAdd(name='bifpn-add-{0}-{1}'.format(index, value))(
                [x, inputs[1], inputs[2]])

        if type == 'out':
            x = L.MaxPooling2D(pool_size=3, strides=2,
                               padding='same')(inputs[0])
            add = wBiFPNAdd(name='bifpn-add-{0}-{1}'.format(index, value))(
                [x, inputs[1]])

        out = L.Activation(lambda y: tf.nn.swish(y))(add)
        out = ConvBlock(value=value, kernel_size=3, strides=1)(out)
        return out
コード例 #2
0
ファイル: model.py プロジェクト: hiyyg/EfficientPose
def single_BiFPN_merge_step(feature_map_other_level,
                            feature_maps_current_level, upsampling,
                            num_channels, idx_BiFPN_layer, node_idx, op_idx):
    """
    Merges two feature maps of different levels in the BiFPN
    Args:
        feature_map_other_level: Input feature map of a different level. Needs to be resized before merging.
        feature_maps_current_level: Input feature map of the current level
        upsampling: Boolean indicating wheter to upsample or downsample the feature map of the different level to match the shape of the current level
        num_channels: Number of channels used in the BiFPN
        idx_BiFPN_layer: The index of the BiFPN layer to build
        node_idx, op_idx: Integers needed to set the correct layer names
    
    Returns:
       The merged feature map
    """
    if upsampling:
        feature_map_resampled = layers.UpSampling2D()(feature_map_other_level)
    else:
        feature_map_resampled = layers.MaxPooling2D(
            pool_size=3, strides=2, padding='same')(feature_map_other_level)

    merged_feature_map = wBiFPNAdd(
        name=f'fpn_cells/cell_{idx_BiFPN_layer}/fnode{node_idx}/add')(
            feature_maps_current_level + [feature_map_resampled])
    merged_feature_map = layers.Activation(lambda x: tf.nn.swish(x))(
        merged_feature_map)
    merged_feature_map = SeparableConvBlock(
        num_channels=num_channels,
        kernel_size=3,
        strides=1,
        name=
        f'fpn_cells/cell_{idx_BiFPN_layer}/fnode{node_idx}/op_after_combine{op_idx}'
    )(merged_feature_map)

    return merged_feature_map
コード例 #3
0
ファイル: model.py プロジェクト: zyclarkcheng/EfficientDet
def build_wBiFPN(features, num_channels, id, freeze_bn=False):
    if id == 0:
        _, _, C3, C4, C5 = features
        P3_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P3'.format(id))(C3)
        P4_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P4'.format(id))(C4)
        P5_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P5'.format(id))(C5)
        P6_in = ConvBlock(num_channels,
                          kernel_size=3,
                          strides=2,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P6'.format(id))(C5)
        P7_in = ConvBlock(num_channels,
                          kernel_size=3,
                          strides=2,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P7'.format(id))(P6_in)
    else:
        P3_in, P4_in, P5_in, P6_in, P7_in = features
        P3_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P3'.format(id))(P3_in)
        P4_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P4'.format(id))(P4_in)
        P5_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P5'.format(id))(P5_in)
        P6_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P6'.format(id))(P6_in)
        P7_in = ConvBlock(num_channels,
                          kernel_size=1,
                          strides=1,
                          freeze_bn=freeze_bn,
                          name='BiFPN_{}_P7'.format(id))(P7_in)

    # upsample
    P7_U = layers.UpSampling2D()(P7_in)
    P6_td = wBiFPNAdd()([P7_U, P6_in])
    P6_td = DepthwiseConvBlock(kernel_size=3,
                               strides=1,
                               freeze_bn=freeze_bn,
                               name='BiFPN_{}_U_P6'.format(id))(P6_td)
    P6_U = layers.UpSampling2D()(P6_td)
    P5_td = wBiFPNAdd()([P6_U, P5_in])
    P5_td = DepthwiseConvBlock(kernel_size=3,
                               strides=1,
                               freeze_bn=freeze_bn,
                               name='BiFPN_{}_U_P5'.format(id))(P5_td)
    P5_U = layers.UpSampling2D()(P5_td)
    P4_td = wBiFPNAdd()([P5_U, P4_in])
    P4_td = DepthwiseConvBlock(kernel_size=3,
                               strides=1,
                               freeze_bn=freeze_bn,
                               name='BiFPN_{}_U_P4'.format(id))(P4_td)
    P4_U = layers.UpSampling2D()(P4_td)
    P3_out = wBiFPNAdd()([P4_U, P3_in])
    P3_out = DepthwiseConvBlock(kernel_size=3,
                                strides=1,
                                freeze_bn=freeze_bn,
                                name='BiFPN_{}_U_P3'.format(id))(P3_out)
    # downsample
    P3_D = layers.MaxPooling2D(strides=(2, 2))(P3_out)
    P4_out = wBiFPNAdd()([P3_D, P4_td, P4_in])
    P4_out = DepthwiseConvBlock(kernel_size=3,
                                strides=1,
                                freeze_bn=freeze_bn,
                                name='BiFPN_{}_D_P4'.format(id))(P4_out)
    P4_D = layers.MaxPooling2D(strides=(2, 2))(P4_out)
    P5_out = wBiFPNAdd()([P4_D, P5_td, P5_in])
    P5_out = DepthwiseConvBlock(kernel_size=3,
                                strides=1,
                                freeze_bn=freeze_bn,
                                name='BiFPN_{}_D_P5'.format(id))(P5_out)
    P5_D = layers.MaxPooling2D(strides=(2, 2))(P5_out)
    P6_out = wBiFPNAdd()([P5_D, P6_td, P6_in])
    P6_out = DepthwiseConvBlock(kernel_size=3,
                                strides=1,
                                freeze_bn=freeze_bn,
                                name='BiFPN_{}_D_P6'.format(id))(P6_out)
    P6_D = layers.MaxPooling2D(strides=(2, 2))(P6_out)
    P7_out = wBiFPNAdd()([P6_D, P7_in])
    P7_out = DepthwiseConvBlock(kernel_size=3,
                                strides=1,
                                freeze_bn=freeze_bn,
                                name='BiFPN_{}_D_P7'.format(id))(P7_out)

    return P3_out, P4_out, P5_out, P6_out, P7_out
コード例 #4
0
def build_wBiFPN(features, num_channels, id, freeze_bn=False):
    if id == 0:
        _, _, C3, C4, C5 = features
        P3_in = C3
        P4_in = C4
        P5_in = C5
        P6_in = layers.Conv2D(num_channels,
                              kernel_size=1,
                              padding='same',
                              name='resample_p6/conv2d')(C5)
        P6_in = layers.BatchNormalization(momentum=MOMENTUM,
                                          epsilon=EPSILON,
                                          name='resample_p6/bn')(P6_in)
        # P6_in = BatchNormalization(freeze=freeze_bn, name='resample_p6/bn')(P6_in)
        P6_in = layers.MaxPooling2D(pool_size=3,
                                    strides=2,
                                    padding='same',
                                    name='resample_p6/maxpool')(P6_in)
        P7_in = layers.MaxPooling2D(pool_size=3,
                                    strides=2,
                                    padding='same',
                                    name='resample_p7/maxpool')(P6_in)
        P7_U = layers.UpSampling2D()(P7_in)
        P6_td = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode0/add')(
            [P6_in, P7_U])
        P6_td = layers.Activation(lambda x: tf.nn.swish(x))(P6_td)
        P6_td = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode0/op_after_combine5')(P6_td)
        P5_in_1 = layers.Conv2D(
            num_channels,
            kernel_size=1,
            padding='same',
            name=f'fpn_cells/cell_{id}/fnode1/resample_0_2_6/conv2d')(P5_in)
        P5_in_1 = layers.BatchNormalization(
            momentum=MOMENTUM,
            epsilon=EPSILON,
            name=f'fpn_cells/cell_{id}/fnode1/resample_0_2_6/bn')(P5_in_1)
        # P5_in_1 = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode1/resample_0_2_6/bn')(P5_in_1)
        P6_U = layers.UpSampling2D()(P6_td)
        P5_td = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode1/add')(
            [P5_in_1, P6_U])
        P5_td = layers.Activation(lambda x: tf.nn.swish(x))(P5_td)
        P5_td = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode1/op_after_combine6')(P5_td)
        P4_in_1 = layers.Conv2D(
            num_channels,
            kernel_size=1,
            padding='same',
            name=f'fpn_cells/cell_{id}/fnode2/resample_0_1_7/conv2d')(P4_in)
        P4_in_1 = layers.BatchNormalization(
            momentum=MOMENTUM,
            epsilon=EPSILON,
            name=f'fpn_cells/cell_{id}/fnode2/resample_0_1_7/bn')(P4_in_1)
        # P4_in_1 = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode2/resample_0_1_7/bn')(P4_in_1)
        P5_U = layers.UpSampling2D()(P5_td)
        P4_td = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode2/add')(
            [P4_in_1, P5_U])
        P4_td = layers.Activation(lambda x: tf.nn.swish(x))(P4_td)
        P4_td = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode2/op_after_combine7')(P4_td)
        P3_in = layers.Conv2D(
            num_channels,
            kernel_size=1,
            padding='same',
            name=f'fpn_cells/cell_{id}/fnode3/resample_0_0_8/conv2d')(P3_in)
        P3_in = layers.BatchNormalization(
            momentum=MOMENTUM,
            epsilon=EPSILON,
            name=f'fpn_cells/cell_{id}/fnode3/resample_0_0_8/bn')(P3_in)
        # P3_in = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode3/resample_0_0_8/bn')(P3_in)
        P4_U = layers.UpSampling2D()(P4_td)
        P3_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode3/add')(
            [P3_in, P4_U])
        P3_out = layers.Activation(lambda x: tf.nn.swish(x))(P3_out)
        P3_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode3/op_after_combine8')(P3_out)
        P4_in_2 = layers.Conv2D(
            num_channels,
            kernel_size=1,
            padding='same',
            name=f'fpn_cells/cell_{id}/fnode4/resample_0_1_9/conv2d')(P4_in)
        P4_in_2 = layers.BatchNormalization(
            momentum=MOMENTUM,
            epsilon=EPSILON,
            name=f'fpn_cells/cell_{id}/fnode4/resample_0_1_9/bn')(P4_in_2)
        # P4_in_2 = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode4/resample_0_1_9/bn')(P4_in_2)
        P3_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P3_out)
        P4_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode4/add')(
            [P4_in_2, P4_td, P3_D])
        P4_out = layers.Activation(lambda x: tf.nn.swish(x))(P4_out)
        P4_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode4/op_after_combine9')(P4_out)

        P5_in_2 = layers.Conv2D(
            num_channels,
            kernel_size=1,
            padding='same',
            name=f'fpn_cells/cell_{id}/fnode5/resample_0_2_10/conv2d')(P5_in)
        P5_in_2 = layers.BatchNormalization(
            momentum=MOMENTUM,
            epsilon=EPSILON,
            name=f'fpn_cells/cell_{id}/fnode5/resample_0_2_10/bn')(P5_in_2)
        # P5_in_2 = BatchNormalization(freeze=freeze_bn, name=f'fpn_cells/cell_{id}/fnode5/resample_0_2_10/bn')(P5_in_2)
        P4_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P4_out)
        P5_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode5/add')(
            [P5_in_2, P5_td, P4_D])
        P5_out = layers.Activation(lambda x: tf.nn.swish(x))(P5_out)
        P5_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode5/op_after_combine10')(P5_out)

        P5_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P5_out)
        P6_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode6/add')(
            [P6_in, P6_td, P5_D])
        P6_out = layers.Activation(lambda x: tf.nn.swish(x))(P6_out)
        P6_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode6/op_after_combine11')(P6_out)

        P6_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P6_out)
        P7_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode7/add')(
            [P7_in, P6_D])
        P7_out = layers.Activation(lambda x: tf.nn.swish(x))(P7_out)
        P7_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode7/op_after_combine12')(P7_out)

    else:
        P3_in, P4_in, P5_in, P6_in, P7_in = features
        P7_U = layers.UpSampling2D()(P7_in)
        P6_td = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode0/add')(
            [P6_in, P7_U])
        P6_td = layers.Activation(lambda x: tf.nn.swish(x))(P6_td)
        P6_td = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode0/op_after_combine5')(P6_td)
        P6_U = layers.UpSampling2D()(P6_td)
        P5_td = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode1/add')(
            [P5_in, P6_U])
        P5_td = layers.Activation(lambda x: tf.nn.swish(x))(P5_td)
        P5_td = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode1/op_after_combine6')(P5_td)
        P5_U = layers.UpSampling2D()(P5_td)
        P4_td = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode2/add')(
            [P4_in, P5_U])
        P4_td = layers.Activation(lambda x: tf.nn.swish(x))(P4_td)
        P4_td = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode2/op_after_combine7')(P4_td)
        P4_U = layers.UpSampling2D()(P4_td)
        P3_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode3/add')(
            [P3_in, P4_U])
        P3_out = layers.Activation(lambda x: tf.nn.swish(x))(P3_out)
        P3_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode3/op_after_combine8')(P3_out)
        P3_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P3_out)
        P4_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode4/add')(
            [P4_in, P4_td, P3_D])
        P4_out = layers.Activation(lambda x: tf.nn.swish(x))(P4_out)
        P4_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode4/op_after_combine9')(P4_out)

        P4_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P4_out)
        P5_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode5/add')(
            [P5_in, P5_td, P4_D])
        P5_out = layers.Activation(lambda x: tf.nn.swish(x))(P5_out)
        P5_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode5/op_after_combine10')(P5_out)

        P5_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P5_out)
        P6_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode6/add')(
            [P6_in, P6_td, P5_D])
        P6_out = layers.Activation(lambda x: tf.nn.swish(x))(P6_out)
        P6_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode6/op_after_combine11')(P6_out)

        P6_D = layers.MaxPooling2D(pool_size=3, strides=2,
                                   padding='same')(P6_out)
        P7_out = wBiFPNAdd(name=f'fpn_cells/cell_{id}/fnode7/add')(
            [P7_in, P6_D])
        P7_out = layers.Activation(lambda x: tf.nn.swish(x))(P7_out)
        P7_out = SeparableConvBlock(
            num_channels=num_channels,
            kernel_size=3,
            strides=1,
            name=f'fpn_cells/cell_{id}/fnode7/op_after_combine12')(P7_out)
    return P3_out, P4_td, P5_td, P6_td, P7_out