class Attention(object): def __init__(self, channel=None): self.rng_numpy, self.rng_theano = get_two_rngs() self.layers = Layers() self.predict = Predict() self.channel = channel def load_params(self, path, params): # load params from disk pp = np.load(path) for kk, vv in params.iteritems(): if kk not in pp: raise Warning('%s is not in the archive'%kk) params[kk] = pp[kk] return params def init_params(self, options): # all parameters params = OrderedDict() # embedding params['Wemb'] = norm_weight(options['n_words'], options['dim_word']) ctx_dim = options['ctx_dim'] # init_state, init_cell params = self.layers.get_layer('ff')[0](params, nin=ctx_dim, nout=options['mu_dim'], prefix='ff_state') params = self.layers.get_layer('ff')[0](params, nin=ctx_dim, nout=options['mu_dim'], prefix='ff_memory') # decoder: LSTM params = self.layers.get_layer('lstm')[0](params, nin=options['dim_word'], dim=options['tu_dim'], prefix='tu_lstm') params = self.layers.get_layer('attend')[0](params, nin=options['tu_dim'], dimctx=ctx_dim, prefix='attend') params = self.layers.get_layer('lstm_concat')[0](options, params, nin=options['tu_dim'], dim=options['mu_dim'], dimctx=ctx_dim, prefix='mu_lstm') # readout params = self.layers.get_layer('ff')[0](params, nin=options['mu_dim'], nout=options['dim_word'], prefix='ff_logit_lstm') if options['ctx2out']: params = self.layers.get_layer('ff')[0](params, nin=ctx_dim, nout=options['dim_word'], prefix='ff_logit_ctx') params = self.layers.get_layer('ff')[0](params, nin=options['dim_word'], nout=options['n_words'], prefix='ff_logit') return params def build_model(self, tparams, options): trng = RandomStreams(1234) use_noise = theano.shared(np.float32(0.)) # description string: #words x #samples x = tensor.matrix('x', dtype='int64') mask = tensor.matrix('mask', dtype='float32') # context: #samples x #annotations x dim ctx = tensor.tensor3('ctx', dtype='float32') mask_ctx = tensor.matrix('mask_ctx', dtype='float32') n_timesteps = x.shape[0] n_samples = x.shape[1] # index into the word embedding matrix, shift it forward in time emb = tparams['Wemb'][x.flatten()].reshape( [n_timesteps, n_samples, options['dim_word']]) emb_shifted = tensor.zeros_like(emb) emb_shifted = tensor.set_subtensor(emb_shifted[1:], emb[:-1]) emb = emb_shifted ctx_ = ctx counts = mask_ctx.sum(-1).dimshuffle(0,'x') ctx_mean = ctx_.sum(1)/counts # initial state/cell init_state = self.layers.get_layer('ff')[1](tparams, ctx_mean, activ='tanh', prefix='ff_state') init_memory = self.layers.get_layer('ff')[1](tparams, ctx_mean, activ='tanh', prefix='ff_memory') # decoder tu_lstm = self.layers.get_layer('lstm')[1](tparams, emb, mask=mask, prefix='tu_lstm') attend = self.layers.get_layer('attend')[1](tparams, tu_lstm[0], ctx_) mu_lstm = self.layers.get_layer('lstm_concat')[1](options, tparams, tu_lstm[0], mask=mask, ctxs=attend[1], one_step=False, init_state=init_state, init_memory=init_memory, trng=trng, use_noise=use_noise, prefix='mu_lstm') proj_h = mu_lstm[0] betas = mu_lstm[2] ctxs = mu_lstm[3] alphas = attend[0] if options['use_dropout']: proj_h = self.layers.dropout_layer(proj_h, use_noise, trng) # compute word probabilities logit = self.layers.get_layer('ff')[1](tparams, proj_h, activ='linear', prefix='ff_logit_lstm') if options['prev2out']: logit += emb if options['ctx2out']: logit += self.layers.get_layer('ff')[1](tparams, ctxs, activ='linear', prefix='ff_logit_ctx') logit = tanh(logit) if options['use_dropout']: logit = self.layers.dropout_layer(logit, use_noise, trng) # (t,m,n_words) logit = self.layers.get_layer('ff')[1](tparams, logit, activ='linear', prefix='ff_logit') logit_shp = logit.shape # (t*m, n_words) probs = tensor.nnet.softmax(logit.reshape([logit_shp[0]*logit_shp[1], logit_shp[2]])) # cost x_flat = x.flatten() # (t*m,) cost = -tensor.log(probs[T.arange(x_flat.shape[0]), x_flat] + 1e-8) cost = cost.reshape([x.shape[0], x.shape[1]]) cost = (cost * mask).sum(0) extra = [probs, alphas, betas] test = [attend[1]] return trng, use_noise, x, mask, ctx, mask_ctx, alphas, cost, extra, test def pred_probs(self, whichset, f_log_probs, verbose=True): probs = [] n_done = 0 NLL = [] L = [] if whichset == 'train': tags = self.engine.train iterator = self.engine.kf_train elif whichset == 'valid': tags = self.engine.valid iterator = self.engine.kf_valid elif whichset == 'test': tags = self.engine.test iterator = self.engine.kf_test else: raise NotImplementedError() n_samples = np.sum([len(index) for index in iterator]) for index in iterator: tag = [tags[i] for i in index] x, mask, ctx, ctx_mask,vid_names = data_engine.prepare_data( self.engine, tag) pred_probs = f_log_probs(x, mask, ctx, ctx_mask) L.append(mask.sum(0).tolist()) NLL.append((-1 * pred_probs).tolist()) probs.append(pred_probs.tolist()) n_done += len(tag) if verbose: sys.stdout.write('\rComputing LL on %d/%d examples'%( n_done, n_samples)) sys.stdout.flush() print probs = flatten_list_of_list(probs) NLL = flatten_list_of_list(NLL) L = flatten_list_of_list(L) perp = 2**(np.sum(NLL) / np.sum(L) / np.log(2)) return -1 * np.mean(probs), perp def train(self, random_seed=1234, reload_=False, verbose=True, debug=True, save_model_dir='', from_dir=None, # dataset dataset='youtube2text', video_feature='googlenet', K=10, OutOf=240, # network dim_word=256, # word vector dimensionality ctx_dim=-1, # context vector dimensionality, auto set tu_dim=512, mu_dim=1024, vu_dim=1024, n_layers_out=1, n_layers_init=1, prev2out=False, ctx2out=False, selector=False, n_words=100000, maxlen=100, # maximum length of the description use_dropout=False, isGlobal=False, # training patience=10, max_epochs=5000, decay_c=0., alpha_c=0., alpha_entropy_r=0., lrate=0.01, optimizer='adadelta', clip_c=2., # minibatch batch_size = 64, valid_batch_size = 64, dispFreq=100, validFreq=10, saveFreq=10, # save the parameters after every saveFreq updates sampleFreq=10, # generate some samples after every sampleFreq updates # metric metric='blue' ): self.rng_numpy, self.rng_theano = get_two_rngs() model_options = locals().copy() if 'self' in model_options: del model_options['self'] model_options = validate_options(model_options) with open('%smodel_options.pkl'%save_model_dir, 'wb') as f: pkl.dump(model_options, f) print 'Loading data' self.engine = data_engine.Movie2Caption('attention', dataset, video_feature, batch_size, valid_batch_size, maxlen, n_words, K, OutOf) model_options['ctx_dim'] = self.engine.ctx_dim print 'init params' t0 = time.time() params = self.init_params(model_options) # reloading if reload_: model_saved = from_dir+'/model_best_so_far.npz' assert os.path.isfile(model_saved) print "Reloading model params..." params = load_params(model_saved, params) tparams = init_tparams(params) if verbose: print tparams.keys trng, use_noise, x, mask, ctx, mask_ctx, alphas, cost, extra, test = \ self.build_model(tparams, model_options) if debug: print 'buliding test' test_fun = theano.function([x, mask, ctx, mask_ctx], test, name='f_test', on_unused_input='ignore') print 'buliding sampler' f_init, f_next = self.predict.build_sampler(self.layers, tparams, model_options, use_noise, trng) # before any regularizer print 'building f_log_probs' f_log_probs = theano.function([x, mask, ctx, mask_ctx], -cost, profile=False, on_unused_input='ignore') cost = cost.mean() if decay_c > 0.: decay_c = theano.shared(np.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): weight_decay += (vv ** 2).sum() weight_decay *= decay_c cost += weight_decay if alpha_c > 0.: alpha_c = theano.shared(np.float32(alpha_c), name='alpha_c') alpha_reg = alpha_c * ((1.-alphas.sum(0))**2).sum(0).mean() cost += alpha_reg if alpha_entropy_r > 0: alpha_entropy_r = theano.shared(np.float32(alpha_entropy_r), name='alpha_entropy_r') alpha_reg_2 = alpha_entropy_r * (-tensor.sum(alphas * tensor.log(alphas+1e-8),axis=-1)).sum(0).mean() cost += alpha_reg_2 else: alpha_reg_2 = tensor.zeros_like(cost) print 'building f_alpha' f_alpha = theano.function([x, mask, ctx, mask_ctx], [alphas, alpha_reg_2], name='f_alpha', on_unused_input='ignore') print 'compute grad' grads = tensor.grad(cost, wrt=itemlist(tparams)) if clip_c > 0.: g2 = 0. for g in grads: g2 += (g**2).sum() new_grads = [] for g in grads: new_grads.append(tensor.switch(g2 > (clip_c**2), g / tensor.sqrt(g2) * clip_c, g)) grads = new_grads lr = tensor.scalar(name='lr') print 'build train fns' f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, [x, mask, ctx, mask_ctx], cost, extra + grads) print 'compilation took %.4f sec'%(time.time()-t0) print 'Optimization' history_errs = [] # reload history if reload_: print 'loading history error...' history_errs = np.load( from_dir+'model_best_so_far.npz')['history_errs'].tolist() bad_counter = 0 processes = None queue = None rqueue = None shared_params = None uidx = 0 uidx_best_blue = 0 uidx_best_valid_err = 0 estop = False best_p = unzip(tparams) best_blue_valid = 0 best_valid_err = 999 alphas_ratio = [] for eidx in xrange(max_epochs): n_samples = 0 train_costs = [] grads_record = [] print 'Epoch ', eidx for idx in self.engine.kf_train: tags = [self.engine.train[index] for index in idx] n_samples += len(tags) uidx += 1 use_noise.set_value(1.) pd_start = time.time() x, mask, ctx, ctx_mask,vid_names = data_engine.prepare_data( self.engine, tags) if debug: datas = test_fun(x, mask, ctx, ctx_mask) for item in datas: print item[0].shape pd_duration = time.time() - pd_start if x is None: print 'Minibatch with zero sample under length ', maxlen continue ud_start = time.time() rvals = f_grad_shared(x, mask, ctx, ctx_mask) cost = rvals[0] probs = rvals[1] alphas = rvals[2] betas = rvals[3] grads = rvals[4:] grads, NaN_keys = grad_nan_report(grads, tparams) if len(grads_record) >= 5: del grads_record[0] grads_record.append(grads) if NaN_keys != []: print 'grads contain NaN' import pdb; pdb.set_trace() if np.isnan(cost) or np.isinf(cost): print 'NaN detected in cost' import pdb; pdb.set_trace() # update params f_update(lrate) ud_duration = time.time() - ud_start if eidx == 0: train_error = cost else: train_error = train_error * 0.95 + cost * 0.05 train_costs.append(cost) if np.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, ', Update ', uidx, \ ', Train cost mean so far', train_error, \ ', betas mean', np.round(betas.mean(), 3), \ ', fetching data time spent (sec)', np.round(pd_duration, 3), \ ', update time spent (sec)', np.round(ud_duration, 3) alphas,reg = f_alpha(x,mask,ctx,ctx_mask) print 'alpha ratio %.3f, reg %.3f' % ( alphas.min(-1).mean() / (alphas.max(-1)).mean(), reg) if np.mod(uidx, saveFreq) == 0: pass if np.mod(uidx, sampleFreq) == 0: use_noise.set_value(0.) print '------------- sampling from train ----------' self.predict.sample_execute(self.engine, model_options, tparams, f_init, f_next, x, ctx, ctx_mask, trng,vid_names) print '------------- sampling from valid ----------' idx = self.engine.kf_valid[np.random.randint(1, len(self.engine.kf_valid) - 1)] tags = [self.engine.valid[index] for index in idx] x_s, mask_s, ctx_s, mask_ctx_s,vid_names = data_engine.prepare_data(self.engine, tags) self.predict.sample_execute(self.engine, model_options, tparams, f_init, f_next, x_s, ctx_s, mask_ctx_s, trng, vid_names) # end of sample if validFreq != -1 and np.mod(uidx, validFreq) == 0: t0_valid = time.time() alphas,_ = f_alpha(x, mask, ctx, ctx_mask) ratio = alphas.min(-1).mean()/(alphas.max(-1)).mean() alphas_ratio.append(ratio) np.savetxt(save_model_dir+'alpha_ratio.txt',alphas_ratio) current_params = unzip(tparams) np.savez(save_model_dir+'model_current.npz', history_errs=history_errs, **current_params) use_noise.set_value(0.) train_err = -1 train_perp = -1 valid_err = -1 valid_perp = -1 test_err = -1 test_perp = -1 if not debug: # first compute train cost if 0: print 'computing cost on trainset' train_err, train_perp = self.pred_probs( 'train', f_log_probs, verbose=model_options['verbose']) else: train_err = 0. train_perp = 0. if 1: print 'validating...' valid_err, valid_perp = self.pred_probs( 'valid', f_log_probs, verbose=model_options['verbose'], ) else: valid_err = 0. valid_perp = 0. if 0: print 'testing...' test_err, test_perp = self.pred_probs( 'test', f_log_probs, verbose=model_options['verbose'] ) else: test_err = 0. test_perp = 0. mean_ranking = 0 blue_t0 = time.time() scores, processes, queue, rqueue, shared_params = \ metrics.compute_score(model_type='attention', model_archive=current_params, options=model_options, engine=self.engine, save_dir=save_model_dir, beam=5, n_process=5, whichset='both', on_cpu=False, processes=processes, queue=queue, rqueue=rqueue, shared_params=shared_params, metric=metric, one_time=False, f_init=f_init, f_next=f_next, model=self.predict ) valid_B1 = scores['valid']['Bleu_1'] valid_B2 = scores['valid']['Bleu_2'] valid_B3 = scores['valid']['Bleu_3'] valid_B4 = scores['valid']['Bleu_4'] valid_Rouge = scores['valid']['ROUGE_L'] valid_Cider = scores['valid']['CIDEr'] valid_meteor = scores['valid']['METEOR'] test_B1 = scores['test']['Bleu_1'] test_B2 = scores['test']['Bleu_2'] test_B3 = scores['test']['Bleu_3'] test_B4 = scores['test']['Bleu_4'] test_Rouge = scores['test']['ROUGE_L'] test_Cider = scores['test']['CIDEr'] test_meteor = scores['test']['METEOR'] print 'computing meteor/blue score used %.4f sec, '\ 'blue score: %.1f, meteor score: %.1f'%( time.time()-blue_t0, valid_B4, valid_meteor) history_errs.append([eidx, uidx, train_perp, train_err, valid_perp, valid_err, test_perp, test_err, valid_B1, valid_B2, valid_B3, valid_B4, valid_meteor, valid_Rouge, valid_Cider, test_B1, test_B2, test_B3, test_B4, test_meteor, test_Rouge, test_Cider]) np.savetxt(save_model_dir+'train_valid_test.txt', history_errs, fmt='%.3f') print 'save validation results to %s'%save_model_dir # save best model according to the best blue or meteor if len(history_errs) > 1 and valid_B4 > np.array(history_errs)[:-1, 11].max(): print 'Saving to %s...'%save_model_dir, np.savez( save_model_dir+'model_best_blue_or_meteor.npz', history_errs=history_errs, **best_p) if len(history_errs) > 1 and valid_err < np.array(history_errs)[:-1, 5].min(): best_p = unzip(tparams) bad_counter = 0 best_valid_err = valid_err uidx_best_valid_err = uidx print 'Saving to %s...'%save_model_dir, np.savez( save_model_dir+'model_best_so_far.npz', history_errs=history_errs, **best_p) with open('%smodel_options.pkl'%save_model_dir, 'wb') as f: pkl.dump(model_options, f) print 'Done' elif len(history_errs) > 1 and valid_err >= np.array(history_errs)[:-1, 5].min(): bad_counter += 1 print 'history best ', np.array(history_errs)[:,6].min() print 'bad_counter ', bad_counter print 'patience ', patience if bad_counter > patience: print 'Early Stop!' estop = True break if test_B4 > 0.48 and test_meteor > 0.32: print 'Saving to %s...' % save_model_dir, numpy.savez( save_model_dir + 'model_' + str(uidx) + '.npz', history_errs=history_errs, **current_params) if self.channel: self.channel.save() print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err, \ 'best valid err so far',best_valid_err print 'valid took %.2f sec'%(time.time() - t0_valid) # end of validatioin if debug: break if estop: break if debug: break # end for loop over minibatches print 'This epoch has seen %d samples, train cost %.2f'%( n_samples, np.mean(train_costs)) # end for loop over epochs print 'Optimization ended.' if best_p is not None: zipp(best_p, tparams) print 'stopped at epoch %d, minibatch %d, '\ 'curent Train %.2f, current Valid %.2f, current Test %.2f '%( eidx, uidx, np.mean(train_err), np.mean(valid_err), np.mean(test_err)) params = copy.copy(best_p) np.savez(save_model_dir+'model_best.npz', train_err=train_err, valid_err=valid_err, test_err=test_err, history_errs=history_errs, **params) if history_errs != []: history = np.asarray(history_errs) best_valid_idx = history[:,6].argmin() np.savetxt(save_model_dir+'train_valid_test.txt', history, fmt='%.4f') print 'final best exp ', history[best_valid_idx] return train_err, valid_err, test_err
class Model(object): def __init__(self): self.layers = Layers() def init_params(self, options): # all parameters params = OrderedDict() # embedding ctx_dim_c = 4096 params['Wemb'] = utils.norm_weight(options['n_words'], options['dim_word']) ctx_dim = options['ctx_dim'] params = self.layers.get_layer('ff')[0](options, params, prefix='ff_state', nin=ctx_dim, nout=options['dim']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_memory', nin=ctx_dim, nout=options['dim']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_state_c', nin=ctx_dim_c, nout=options['dim']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_memory_c', nin=ctx_dim_c, nout=options['dim']) # decoder: LSTM params = self.layers.get_layer('lstm_cond')[0](options, params, prefix='bo_lstm', nin=options['dim_word'], dim=options['dim'], dimctx=ctx_dim) params = self.layers.get_layer('lstm')[0](params, nin=options['dim'], dim=options['dim'], prefix='to_lstm') # readout params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_bo', nin=options['dim'], nout=options['dim_word']) if options['ctx2out']: params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_ctx', nin=ctx_dim, nout=options['dim_word']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_ctx_c', nin=ctx_dim_c, nout=options['dim_word']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_to', nin=options['dim'], nout=options['dim_word']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim_word'], nout=options['n_words']) return params def build_model(self, tparams, options): trng = RandomStreams(1234) use_noise = theano.shared(numpy.float32(0.)) # description string: #words x #samples x = tensor.matrix('x', dtype='int64') mask = tensor.matrix('mask', dtype='float32') # context: #samples x #annotations x dim ctx = tensor.tensor3('ctx', dtype='float32') mask_ctx = tensor.matrix('mask_ctx', dtype='float32') ctx_c = tensor.tensor3('ctx_c', dtype='float32') mask_ctx_c = tensor.matrix('mask_ctx_c', dtype='float32') n_timesteps = x.shape[0] n_samples = x.shape[1] # index into the word embedding matrix, shift it forward in time emb = tparams['Wemb'][x.flatten()].reshape( [n_timesteps, n_samples, options['dim_word']]) emb_shifted = tensor.zeros_like(emb) emb_shifted = tensor.set_subtensor(emb_shifted[1:], emb[:-1]) emb = emb_shifted counts = mask_ctx.sum(-1).dimshuffle(0, 'x') ctx_ = ctx ctx_c_ = ctx_c ctx0 = ctx_ ctx_mean = ctx0.sum(1) / counts ctx0_c = ctx_c_ ctx_mean_c = ctx0_c.sum(1) / counts # initial state/cell init_state = self.layers.get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') init_memory = self.layers.get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory', activ='tanh') init_state_c = self.layers.get_layer('ff')[1](tparams, ctx_mean_c, options, prefix='ff_state_c', activ='tanh') init_memory_c = self.layers.get_layer('ff')[1](tparams, ctx_mean_c, options, prefix='ff_memory_c', activ='tanh') init_state += init_state_c init_memory += init_memory_c # decoder bo_lstm = self.layers.get_layer('lstm_cond')[1]( tparams, emb, options, prefix='bo_lstm', mask=mask, context=ctx0, context_c=ctx0_c, one_step=False, init_state=init_state, init_memory=init_memory, trng=trng, use_noise=use_noise) to_lstm = self.layers.get_layer('lstm')[1](tparams, bo_lstm[0], mask=mask, one_step=False, prefix='to_lstm') bo_lstm_h = bo_lstm[0] to_lstm_h = to_lstm[0] alphas = bo_lstm[2] alphas_c = bo_lstm[3] ctxs = bo_lstm[4] ctxs_c = bo_lstm[5] weight = bo_lstm[6] if options['use_dropout']: bo_lstm_h = self.layers.dropout_layer(bo_lstm_h, use_noise, trng) to_lstm_h = self.layers.dropout_layer(to_lstm_h, use_noise, trng) # compute word probabilities logit = self.layers.get_layer('ff')[1](tparams, bo_lstm_h, options, prefix='ff_logit_bo', activ='linear') if options['prev2out']: logit += emb if options['ctx2out']: betas = weight[:, :, 2] #betas = betas.reshape([betas.shape[1],betas.shape[2]]) to_lstm_h *= betas[:, :, None] ctxs_beta = self.layers.get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') ctxs_beta_c = self.layers.get_layer('ff')[1]( tparams, ctxs_c, options, prefix='ff_logit_ctx_c', activ='linear') to_lstm_h = self.layers.get_layer('ff')[1](tparams, to_lstm_h, options, prefix='ff_logit_to', activ='linear') logit = logit + ctxs_beta + ctxs_beta_c + to_lstm_h logit = utils.tanh(logit) if options['use_dropout']: logit = self.layers.dropout_layer(logit, use_noise, trng) # (t,m,n_words) logit = self.layers.get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') logit_shp = logit.shape # (t*m, n_words) probs = tensor.nnet.softmax( logit.reshape([logit_shp[0] * logit_shp[1], logit_shp[2]])) # cost x_flat = x.flatten() # (t*m,) cost = -tensor.log(probs[tensor.arange(x_flat.shape[0]), x_flat] + 1e-8) cost = cost.reshape([x.shape[0], x.shape[1]]) cost = (cost * mask).sum(0) extra = [probs, alphas, alphas_c, weight[:, :, 0], weight[:, :, 1]] return trng, use_noise, x, mask, ctx, mask_ctx, ctx_c, mask_ctx_c, cost, extra def build_sampler(self, tparams, options, use_noise, trng, mode=None): # context: #annotations x dim ctx0 = tensor.matrix('ctx_sampler', dtype='float32') # ctx0.tag.test_value = numpy.random.uniform(size=(50,1024)).astype('float32') ctx_mask = tensor.vector('ctx_mask', dtype='float32') # ctx_mask.tag.test_value = numpy.random.binomial(n=1,p=0.5,size=(50,)).astype('float32') ctx0_c = tensor.matrix('ctx_sampler_c', dtype='float32') # ctx0.tag.test_value = numpy.random.uniform(size=(50,1024)).astype('float32') ctx_mask_c = tensor.vector('ctx_mask_c', dtype='float32') ctx_ = ctx0 counts = ctx_mask.sum(-1) ctx = ctx_ ctx_mean = ctx.sum(0) / counts ctx_c_ = ctx0_c counts_c = ctx_mask_c.sum(-1) ctx_c = ctx_c_ ctx_mean_c = ctx_c.sum(0) / counts_c # ctx_mean = ctx.mean(0) ctx = ctx.dimshuffle('x', 0, 1) # initial state/cell bo_init_state = self.layers.get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') bo_init_memory = self.layers.get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_memory', activ='tanh') bo_init_state_c = self.layers.get_layer('ff')[1](tparams, ctx_mean_c, options, prefix='ff_state_c', activ='tanh') bo_init_memory_c = self.layers.get_layer('ff')[1](tparams, ctx_mean_c, options, prefix='ff_memory_c', activ='tanh') bo_init_state += bo_init_state_c bo_init_memory += bo_init_memory_c to_init_state = tensor.alloc(0., options['dim']) to_init_memory = tensor.alloc(0., options['dim']) init_state = [bo_init_state, to_init_state] init_memory = [bo_init_memory, to_init_memory] print 'Building f_init...', f_init = theano.function([ctx0, ctx_mask, ctx0_c, ctx_mask_c], [ctx0] + init_state + init_memory, name='f_init', on_unused_input='ignore', profile=False, mode=mode) print 'Done' x = tensor.vector('x_sampler', dtype='int64') init_state = [ tensor.matrix('bo_init_state', dtype='float32'), tensor.matrix('to_init_state', dtype='float32') ] init_memory = [ tensor.matrix('bo_init_memory', dtype='float32'), tensor.matrix('to_init_memory', dtype='float32') ] # if it's the first word, emb should be all zero emb = tensor.switch(x[:, None] < 0, tensor.alloc(0., 1, tparams['Wemb'].shape[1]), tparams['Wemb'][x]) bo_lstm = self.layers.get_layer('lstm_cond')[1]( tparams, emb, options, prefix='bo_lstm', mask=None, context=ctx, context_c=ctx_c, one_step=True, init_state=init_state[0], init_memory=init_memory[0], trng=trng, use_noise=use_noise, mode=mode) to_lstm = self.layers.get_layer('lstm')[1](tparams, bo_lstm[0], mask=None, one_step=True, init_state=init_state[1], init_memory=init_memory[1], prefix='to_lstm') next_state = [bo_lstm[0], to_lstm[0]] next_memory = [bo_lstm[1], to_lstm[0]] bo_lstm_h = bo_lstm[0] to_lstm_h = to_lstm[0] alphas = bo_lstm[2] alphas_c = bo_lstm[3] ctxs = bo_lstm[4] ctxs_c = bo_lstm[5] weight = bo_lstm[6] if options['use_dropout']: bo_lstm_h = self.layers.dropout_layer(bo_lstm_h, use_noise, trng) to_lstm_h = self.layers.dropout_layer(to_lstm_h, use_noise, trng) logit = self.layers.get_layer('ff')[1](tparams, bo_lstm_h, options, prefix='ff_logit_bo', activ='linear') if options['prev2out']: logit += emb if options['ctx2out']: betas = weight[:, 2] # betas = betas.reshape([betas.shape[1],betas.shape[2]]) to_lstm_h *= betas[:, None] ctxs_beta = self.layers.get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') ctxs_beta_c = self.layers.get_layer('ff')[1]( tparams, ctxs_c, options, prefix='ff_logit_ctx_c', activ='linear') to_lstm_h = self.layers.get_layer('ff')[1](tparams, to_lstm_h, options, prefix='ff_logit_to', activ='linear') logit = logit + ctxs_beta + ctxs_beta_c + to_lstm_h logit = utils.tanh(logit) if options['use_dropout']: logit = self.layers.dropout_layer(logit, use_noise, trng) logit = self.layers.get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') logit_shp = logit.shape next_probs = tensor.nnet.softmax(logit) next_sample = trng.multinomial(pvals=next_probs).argmax(1) # next word probability print 'building f_next...' f_next = theano.function( [x, ctx0, ctx_mask, ctx0_c, ctx_mask_c] + init_state + init_memory, [next_probs, next_sample] + next_state + next_memory, name='f_next', profile=False, mode=mode, on_unused_input='ignore') print 'Done' return f_init, f_next def gen_sample(self, tparams, f_init, f_next, ctx0, ctx0_c, ctx_mask, ctx_mask_c, options, trng=None, k=1, maxlen=30, stochastic=False, restrict_voc=False): ''' ctx0: (26,1024) ctx_mask: (26,) restrict_voc: set the probability of outofvoc words with 0, renormalize ''' if k > 1: assert not stochastic, 'Beam search does not support stochastic sampling' sample = [] sample_score = [] if stochastic: sample_score = 0 live_k = 1 dead_k = 0 hyp_samples = [[]] * live_k hyp_scores = numpy.zeros(live_k).astype('float32') hyp_states = [] hyp_memories = [] # [(26,1024),(512,),(512,)] rval = f_init(ctx0, ctx_mask, ctx0_c, ctx_mask_c) ctx0 = rval[0] next_state = [] next_memory = [] n_layers_lstm = 2 for lidx in xrange(n_layers_lstm): next_state.append(rval[1 + lidx]) next_state[-1] = next_state[-1].reshape( [live_k, next_state[-1].shape[0]]) for lidx in xrange(n_layers_lstm): next_memory.append(rval[1 + n_layers_lstm + lidx]) next_memory[-1] = next_memory[-1].reshape( [live_k, next_memory[-1].shape[0]]) next_w = -1 * numpy.ones((1, )).astype('int64') # next_state: [(1,512)] # next_memory: [(1,512)] for ii in xrange(maxlen): # return [(1, 50000), (1,), (1, 512), (1, 512)] # next_w: vector # ctx: matrix # ctx_mask: vector # next_state: [matrix] # next_memory: [matrix] rval = f_next(*([next_w, ctx0, ctx_mask, ctx0_c, ctx_mask_c] + next_state + next_memory)) next_p = rval[0] if restrict_voc: raise NotImplementedError() next_w = rval[1] # already argmax sorted next_state = [] for lidx in xrange(n_layers_lstm): next_state.append(rval[2 + lidx]) next_memory = [] for lidx in xrange(n_layers_lstm): next_memory.append(rval[2 + n_layers_lstm + lidx]) if stochastic: sample.append(next_w[0]) # take the most likely one sample_score += next_p[0, next_w[0]] if next_w[0] == 0: break else: # the first run is (1,50000) cand_scores = hyp_scores[:, None] - numpy.log(next_p) cand_flat = cand_scores.flatten() ranks_flat = cand_flat.argsort()[:(k - dead_k)] voc_size = next_p.shape[1] trans_indices = ranks_flat / voc_size # index of row word_indices = ranks_flat % voc_size # index of col costs = cand_flat[ranks_flat] new_hyp_samples = [] new_hyp_scores = numpy.zeros(k - dead_k).astype('float32') new_hyp_states = [] for lidx in xrange(n_layers_lstm): new_hyp_states.append([]) new_hyp_memories = [] for lidx in xrange(n_layers_lstm): new_hyp_memories.append([]) for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)): new_hyp_samples.append(hyp_samples[ti] + [wi]) new_hyp_scores[idx] = copy.copy(costs[idx]) for lidx in xrange(n_layers_lstm): new_hyp_states[lidx].append( copy.copy(next_state[lidx][ti])) for lidx in xrange(n_layers_lstm): new_hyp_memories[lidx].append( copy.copy(next_memory[lidx][ti])) # check the finished samples new_live_k = 0 hyp_samples = [] hyp_scores = [] hyp_states = [] for lidx in xrange(n_layers_lstm): hyp_states.append([]) hyp_memories = [] for lidx in xrange(n_layers_lstm): hyp_memories.append([]) for idx in xrange(len(new_hyp_samples)): if new_hyp_samples[idx][-1] == 0: sample.append(new_hyp_samples[idx]) sample_score.append(new_hyp_scores[idx]) dead_k += 1 else: new_live_k += 1 hyp_samples.append(new_hyp_samples[idx]) hyp_scores.append(new_hyp_scores[idx]) for lidx in xrange(n_layers_lstm): hyp_states[lidx].append(new_hyp_states[lidx][idx]) for lidx in xrange(n_layers_lstm): hyp_memories[lidx].append( new_hyp_memories[lidx][idx]) hyp_scores = numpy.array(hyp_scores) live_k = new_live_k if new_live_k < 1: break if dead_k >= k: break next_w = numpy.array([w[-1] for w in hyp_samples]) next_state = [] for lidx in xrange(n_layers_lstm): next_state.append(numpy.array(hyp_states[lidx])) next_memory = [] for lidx in xrange(n_layers_lstm): next_memory.append(numpy.array(hyp_memories[lidx])) if not stochastic: # dump every remaining one if live_k > 0: for idx in xrange(live_k): sample.append(hyp_samples[idx]) sample_score.append(hyp_scores[idx]) return sample, sample_score, next_state, next_memory def pred_probs(self, engine, whichset, f_log_probs, verbose=True): probs = [] n_done = 0 NLL = [] L = [] if whichset == 'train': tags = engine.train iterator = engine.kf_train elif whichset == 'valid': tags = engine.valid iterator = engine.kf_valid elif whichset == 'test': tags = engine.test iterator = engine.kf_test else: raise NotImplementedError() n_samples = numpy.sum([len(index) for index in iterator]) for index in iterator: tag = [tags[i] for i in index] x, mask, ctx, ctx_mask, ctx_c, ctx_mask_c = prepare_data( engine, tag) pred_probs = f_log_probs(x, mask, ctx, ctx_mask, ctx_c, ctx_mask_c) L.append(mask.sum(0).tolist()) NLL.append((-1 * pred_probs).tolist()) probs.append(pred_probs.tolist()) n_done += len(tag) if verbose: sys.stdout.write('\rComputing LL on %d/%d examples' % (n_done, n_samples)) sys.stdout.flush() print probs = utils.flatten_list_of_list(probs) NLL = utils.flatten_list_of_list(NLL) L = utils.flatten_list_of_list(L) perp = 2**(numpy.sum(NLL) / numpy.sum(L) / numpy.log(2)) return -1 * numpy.mean(probs), perp def sample_execute(self, engine, options, tparams, f_init, f_next, x, ctx, ctx_c, ctx_mask, ctx_mask_c, trng): stochastic = False for jj in xrange(numpy.minimum(10, x.shape[1])): sample, score, _, _ = self.gen_sample(tparams, f_init, f_next, ctx[jj], ctx_c[jj], ctx_mask[jj], ctx_mask_c[jj], options, trng=trng, k=5, maxlen=30, stochastic=stochastic) if not stochastic: best_one = numpy.argmin(score) sample = sample[best_one] else: sample = sample print 'Truth ', jj, ': ', for vv in x[:, jj]: if vv == 0: break if vv in engine.word_idict: print engine.word_idict[vv], else: print 'UNK', print for kk, ss in enumerate([sample]): print 'Sample (', jj, ') ', ': ', for vv in ss: if vv == 0: break if vv in engine.word_idict: print engine.word_idict[vv], else: print 'UNK', print
class Model(object): def __init__(self): self.layers = Layers() def init_params(self, options): # all parameters params = OrderedDict() # embedding params['Wemb'] = utils.norm_weight(options['vocab_size'], options['word_dim']) # LSTM initial states params = self.layers.get_layer('ff')[0](options, params, prefix='ff_state', nin=options['ctx_dim'], nout=options['lstm_dim']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_memory', nin=options['ctx_dim'], nout=options['lstm_dim']) # decoder: LSTM params = self.layers.get_layer('lstm_cond')[0]( options, params, prefix='bo_lstm', nin=options['word_dim'], dim=options['lstm_dim'], dimctx=options['ctx_dim']) params = self.layers.get_layer('lstm')[0](params, nin=options['lstm_dim'], dim=options['lstm_dim'], prefix='to_lstm') # readout params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_bo', nin=options['lstm_dim'], nout=options['word_dim']) if options['ctx2out']: params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_ctx', nin=options['ctx_dim'], nout=options['word_dim']) params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit_to', nin=options['lstm_dim'], nout=options['word_dim']) # MLP params = self.layers.get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['word_dim'], nout=options['vocab_size']) return params def build_model(self, tfparams, options, x, mask, ctx, ctx_mask): use_noise = tf.Variable(False, dtype=tf.bool, trainable=False, name="use_noise") x_shape = tf.shape(x) n_timesteps = x_shape[0] n_samples = x_shape[1] # get word embeddings emb = tf.nn.embedding_lookup( tfparams['Wemb'], x, name="inputs_emb_lookup") # (num_steps,64,512) emb_shape = tf.shape(emb) indices = tf.expand_dims(tf.range(1, emb_shape[0]), axis=1) emb_shifted = tf.scatter_nd(indices, emb[:-1], emb_shape) emb = emb_shifted # count num_frames==28 with tf.name_scope("ctx_mean"): with tf.name_scope("counts"): counts = tf.expand_dims( tf.reduce_sum(ctx_mask, axis=-1, name="reduce_sum_ctx_mask"), 1) # (64,1) ctx_ = ctx ctx0 = ctx_ # (64,28,2048) ctx_mean = tf.reduce_sum( ctx0, axis=1, name="reduce_sum_ctx" ) / counts #mean pooling of {vi} # (64,2048) # initial state/cell with tf.name_scope("init_state"): init_state = self.layers.get_layer('ff')[1]( tfparams, ctx_mean, options, prefix='ff_state', activ='tanh') # (64,512) with tf.name_scope("init_memory"): init_memory = self.layers.get_layer('ff')[1]( tfparams, ctx_mean, options, prefix='ff_memory', activ='tanh') # (64,512) # hstltm = self.layers.build_hlstm(['bo_lstm','to_lstm'], inputs, n_timesteps, init_state, init_memory) with tf.name_scope("bo_lstm"): bo_lstm = self.layers.get_layer('lstm_cond')[1]( tfparams, emb, options, prefix='bo_lstm', mask=mask, context=ctx0, one_step=False, init_state=init_state, init_memory=init_memory, use_noise=use_noise) with tf.name_scope("to_lstm"): to_lstm = self.layers.get_layer('lstm')[1](tfparams, bo_lstm[0], mask=mask, one_step=False, prefix='to_lstm') bo_lstm_h = bo_lstm[0] # (t,64,512) to_lstm_h = to_lstm[0] # (t,64,512) alphas = bo_lstm[2] # (t,64,28) ctxs = bo_lstm[3] # (t,64,2048) betas = bo_lstm[4] # (t,64,) if options['use_dropout']: bo_lstm_h = self.layers.dropout_layer(bo_lstm_h, use_noise) to_lstm_h = self.layers.dropout_layer(to_lstm_h, use_noise) # compute word probabilities logit = self.layers.get_layer('ff')[1]( tfparams, bo_lstm_h, options, prefix='ff_logit_bo', activ='linear') # (t,64,512)*(512,512) = (t,64,512) if options['prev2out']: logit += emb if options['ctx2out']: to_lstm_h *= (1 - betas[:, :, None]) # (t,64,512)*(t,64,1) ctxs_beta = self.layers.get_layer('ff')[1]( tfparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') # (t,64,2048)*(2048,512) = (t,64,512) ctxs_beta += self.layers.get_layer('ff')[1]( tfparams, to_lstm_h, options, prefix='ff_logit_to', activ='linear' ) # (t,64,512)+((t,64,512)*(512,512)) = (t,64,512) logit += ctxs_beta logit = utils.tanh(logit) # (t,64,512) if options['use_dropout']: logit = self.layers.dropout_layer(logit, use_noise) # (t,m,n_words) logit = self.layers.get_layer('ff')[1]( tfparams, logit, options, prefix='ff_logit', activ='linear') # (t,64,512)*(512,vocab_size) = (t,64,vocab_size) logit_shape = tf.shape(logit) # (t*m, n_words) probs = tf.nn.softmax( tf.reshape(logit, [logit_shape[0] * logit_shape[1], logit_shape[2] ])) # (t*64, vocab_size) # cost x_flat = tf.reshape(x, [x_shape[0] * x_shape[1]]) # (t*m,) x_flat_shape = tf.shape(x_flat) gather_indices = tf.stack([tf.range(x_flat_shape[0]), x_flat], axis=1) # (t*m,2) cost = -tf.log( tf.gather_nd(probs, gather_indices) + 1e-8) # (t*m,) : pick probs of each word in each timestep cost = tf.reshape(cost, [x_shape[0], x_shape[1]]) # (t,m) cost = tf.reduce_sum( (cost * mask), axis=0 ) # (m,) : sum across all timesteps for each element in batch extra = [probs, alphas, betas] return use_noise, cost, extra def build_sampler(self, tfparams, options, use_noise, ctx0, ctx_mask, x, bo_init_state_sampler, to_init_state_sampler, bo_init_memory_sampler, to_init_memory_sampler, mode=None): # ctx: # frames x ctx_dim ctx_ = ctx0 counts = tf.reduce_sum(ctx_mask, axis=-1) # scalar ctx = ctx_ ctx_mean = tf.reduce_sum(ctx, axis=0) / counts # (2048,) ctx = tf.expand_dims(ctx, 0) # (1,28,2048) # initial state/cell bo_init_state = self.layers.get_layer('ff')[1](tfparams, ctx_mean, options, prefix='ff_state', activ='tanh') # (512,) bo_init_memory = self.layers.get_layer('ff')[1](tfparams, ctx_mean, options, prefix='ff_memory', activ='tanh') # (512,) to_init_state = tf.zeros( shape=(options['lstm_dim'], ), dtype=tf.float32) # DOUBT : constant or not? # (512,) to_init_memory = tf.zeros(shape=(options['lstm_dim'], ), dtype=tf.float32) # (512,) init_state = [bo_init_state, to_init_state] init_memory = [bo_init_memory, to_init_memory] print 'building f_init...', f_init = [ctx0] + init_state + init_memory print 'done' init_state = [bo_init_state_sampler, to_init_state_sampler] init_memory = [bo_init_memory_sampler, to_init_memory_sampler] # # if it's the first word, embedding should be all zero emb = tf.cond( tf.reduce_any(x[:, None] < 0), lambda: tf.zeros( shape=(1, tfparams['Wemb'].shape[1]), dtype=tf.float32), lambda: tf.nn.embedding_lookup(tfparams['Wemb'], x)) # (m,512) bo_lstm = self.layers.get_layer('lstm_cond')[1]( tfparams, emb, options, prefix='bo_lstm', mask=None, context=ctx, one_step=True, init_state=init_state[0], init_memory=init_memory[0], use_noise=use_noise, mode=mode) to_lstm = self.layers.get_layer('lstm')[1](tfparams, bo_lstm[0], mask=None, one_step=True, init_state=init_state[1], init_memory=init_memory[1], prefix='to_lstm') next_state = [bo_lstm[0], to_lstm[0]] next_memory = [bo_lstm[1], to_lstm[0]] bo_lstm_h = bo_lstm[0] # (1,512) to_lstm_h = to_lstm[0] # (1,512) alphas = bo_lstm[2] # (1,28) ctxs = bo_lstm[3] # (1,2048) betas = bo_lstm[4] # (1,) if options['use_dropout']: bo_lstm_h = self.layers.dropout_layer(bo_lstm_h, use_noise) to_lstm_h = self.layers.dropout_layer(to_lstm_h, use_noise) # compute word probabilities logit = self.layers.get_layer('ff')[1]( tfparams, bo_lstm_h, options, prefix='ff_logit_bo', activ='linear') # (1,512)*(512,512) = (1,512) if options['prev2out']: logit += emb if options['ctx2out']: to_lstm_h *= (1 - betas[:, None]) # (1,512)*(1,1) = (1,512) ctxs_beta = self.layers.get_layer('ff')[1]( tfparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') # (1,2048)*(2048,512) = (1,512) ctxs_beta += self.layers.get_layer('ff')[1]( tfparams, to_lstm_h, options, prefix='ff_logit_to', activ='linear') # (1,512)+((1,512)*(512,512)) = (1,512) logit += ctxs_beta logit = utils.tanh(logit) # (1,512) if options['use_dropout']: logit = self.layers.dropout_layer(logit, use_noise) # (1,n_words) logit = self.layers.get_layer('ff')[1]( tfparams, logit, options, prefix='ff_logit', activ='linear') # (1,512)*(512,vocab_size) = (1,vocab_size) next_probs = tf.nn.softmax(logit) # next_sample = trng.multinomial(pvals=next_probs).argmax(1) # INCOMPLETE , DOUBT : why is multinomial needed? next_sample = tf.multinomial( next_probs, 1) # draw samples with given probabilities (1,1) next_sample_shape = tf.shape(next_sample) next_sample = tf.reshape(next_sample, [next_sample_shape[0]]) # next word probability print 'building f_next...', f_next = [next_probs, next_sample] + next_state + next_memory print 'done' return f_init, f_next def gen_sample(self, sess, tfparams, f_init, f_next, ctx0, ctx_mask, options, k=1, maxlen=30, stochastic=False, restrict_voc=False): ''' ctx0: (28,2048) (f, dim_ctx) ctx_mask: (28,) (f, ) restrict_voc: set the probability of outofvoc words with 0, renormalize ''' if k > 1: assert not stochastic, 'Beam search does not support stochastic sampling' sample = [] sample_score = [] if stochastic: sample_score = 0 live_k = 1 dead_k = 0 hyp_samples = [[]] * live_k hyp_scores = np.zeros(live_k).astype('float32') hyp_states = [] hyp_memories = [] # [(28,2048),(512,),(512,),(512,),(512,)] rval = sess.run(f_init, feed_dict={ "ctx_sampler:0": ctx0, "ctx_mask_sampler:0": ctx_mask }) ctx0 = rval[0] next_state = [] next_memory = [] n_layers_lstm = 2 for lidx in xrange(n_layers_lstm): next_state.append(rval[1 + lidx]) next_state[-1] = next_state[-1].reshape( [live_k, next_state[-1].shape[0]]) for lidx in xrange(n_layers_lstm): next_memory.append(rval[1 + n_layers_lstm + lidx]) next_memory[-1] = next_memory[-1].reshape( [live_k, next_memory[-1].shape[0]]) next_w = -1 * np.ones((1, )).astype('int32') for ii in xrange(maxlen): # return [(1, vocab_size), (1,), (1, 512), (1, 512), (1, 512), (1, 512)] # next_w: vector (1,) # ctx: matrix (28, 2048) # ctx_mask: vector (28,) # next_state: [matrix] [(1, 512), (1, 512)] # next_memory: [matrix] [(1, 512), (1, 512)] rval = sess.run(f_next, feed_dict={ "x_sampler:0": next_w, "ctx_sampler:0": ctx0, "ctx_mask_sampler:0": ctx_mask, 'bo_init_state_sampler:0': next_state[0], 'to_init_state_sampler:0': next_state[1], 'bo_init_memory_sampler:0': next_memory[0], 'to_init_memory_sampler:0': next_memory[1] }) next_p = rval[0] if restrict_voc: raise NotImplementedError() next_w = rval[1] # already argmax sorted next_state = [] for lidx in xrange(n_layers_lstm): next_state.append(rval[2 + lidx]) next_memory = [] for lidx in xrange(n_layers_lstm): next_memory.append(rval[2 + n_layers_lstm + lidx]) if stochastic: sample.append(next_w[0]) # take the most likely one sample_score += next_p[0, next_w[0]] if next_w[0] == 0: break else: # the first run is (1,vocab_size) cand_scores = hyp_scores[:, None] - np.log(next_p) cand_flat = cand_scores.flatten() ranks_flat = cand_flat.argsort()[:(k - dead_k)] voc_size = next_p.shape[1] trans_indices = ranks_flat / voc_size # index of row word_indices = ranks_flat % voc_size # index of col costs = cand_flat[ranks_flat] new_hyp_samples = [] new_hyp_scores = np.zeros(k - dead_k).astype('float32') new_hyp_states = [] for lidx in xrange(n_layers_lstm): new_hyp_states.append([]) new_hyp_memories = [] for lidx in xrange(n_layers_lstm): new_hyp_memories.append([]) for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)): new_hyp_samples.append(hyp_samples[ti] + [wi]) new_hyp_scores[idx] = copy.copy(costs[idx]) for lidx in xrange(n_layers_lstm): new_hyp_states[lidx].append( copy.copy(next_state[lidx][ti])) for lidx in xrange(n_layers_lstm): new_hyp_memories[lidx].append( copy.copy(next_memory[lidx][ti])) # check the finished samples new_live_k = 0 hyp_samples = [] hyp_scores = [] hyp_states = [] for lidx in xrange(n_layers_lstm): hyp_states.append([]) hyp_memories = [] for lidx in xrange(n_layers_lstm): hyp_memories.append([]) for idx in xrange(len(new_hyp_samples)): if new_hyp_samples[idx][-1] == 0: sample.append(new_hyp_samples[idx]) sample_score.append(new_hyp_scores[idx]) dead_k += 1 else: new_live_k += 1 hyp_samples.append(new_hyp_samples[idx]) hyp_scores.append(new_hyp_scores[idx]) for lidx in xrange(n_layers_lstm): hyp_states[lidx].append(new_hyp_states[lidx][idx]) for lidx in xrange(n_layers_lstm): hyp_memories[lidx].append( new_hyp_memories[lidx][idx]) hyp_scores = np.array(hyp_scores) live_k = new_live_k if new_live_k < 1: break if dead_k >= k: break next_w = np.array([w[-1] for w in hyp_samples]) next_state = [] for lidx in xrange(n_layers_lstm): next_state.append(np.array(hyp_states[lidx])) next_memory = [] for lidx in xrange(n_layers_lstm): next_memory.append(np.array(hyp_memories[lidx])) if not stochastic: # dump every remaining one if live_k > 0: for idx in xrange(live_k): sample.append(hyp_samples[idx]) sample_score.append(hyp_scores[idx]) return sample, sample_score, next_state, next_memory def pred_probs(self, sess, engine, whichset, f_log_probs, verbose=True): probs = [] n_done = 0 NLL = [] L = [] if whichset == 'train': tags = engine.train_data_ids iterator = engine.kf_train elif whichset == 'val': tags = engine.val_data_ids iterator = engine.kf_val elif whichset == 'test': tags = engine.test_data_ids iterator = engine.kf_test else: raise NotImplementedError() n_samples = np.sum([len(index) for index in iterator]) for index in iterator: tag = [tags[i] for i in index] x, mask, ctx, ctx_mask = prepare_data(engine, tag, mode=whichset) pred_probs = sess.run(f_log_probs, feed_dict={ "word_seq_x:0": x, "word_seq_mask:0": mask, "ctx:0": ctx, "ctx_mask:0": ctx_mask }) L.append(mask.sum(0).tolist()) NLL.append((-1 * pred_probs).tolist()) probs.append(pred_probs.tolist()) n_done += len(tag) if verbose: sys.stdout.write('\rComputing LL on %d/%d examples' % (n_done, n_samples)) sys.stdout.flush() print "" probs = utils.flatten_list_of_list(probs) NLL = utils.flatten_list_of_list(NLL) L = utils.flatten_list_of_list(L) perp = 2**(np.sum(NLL) / np.sum(L) / np.log(2)) return -1 * np.mean(probs), perp def sample_execute(self, sess, engine, options, tfparams, f_init, f_next, x, ctx, ctx_mask): stochastic = not options['beam_search'] if stochastic: beam = 1 else: beam = 5 # x = (t,64) # ctx = (64,28,2048) # ctx_mask = (64,28) for jj in xrange(np.minimum(10, x.shape[1])): sample, score, _, _ = self.gen_sample(sess, tfparams, f_init, f_next, ctx[jj], ctx_mask[jj], options, k=beam, maxlen=30, stochastic=stochastic) if not stochastic: best_one = np.argmin(score) sample = sample[best_one] else: sample = sample print 'Truth ', jj, ': ', for vv in x[:, jj]: if vv == 0: break if vv in engine.reverse_vocab: print engine.reverse_vocab[vv], else: print 'UNK', print "" for kk, ss in enumerate([sample]): print 'Sample (', jj, ') ', ': ', for vv in ss: if vv == 0: break if vv in engine.reverse_vocab: print engine.reverse_vocab[vv], else: print 'UNK', print ""