コード例 #1
0
ファイル: tests.py プロジェクト: stjordanis/claudioflow
    def test_backward(self):
        layer = Sigmoid()
        x = np.random.rand(2)
        y = layer.forward(x)
        deriv_grad = layer.backward(np.ones(1))

        numerical_grad_matrix = numerical_gradient.calc(layer.forward, x)

        # the numerical grad in this case is a matrix made of zeros with
        # dJ/dx_i only in the diagonal
        num_grad = np.diagonal(numerical_grad_matrix)

        numerical_gradient.assert_are_similar(deriv_grad, num_grad)
コード例 #2
0
        layer1.forward(trainingData[batch])
        activation1.forward(layer1.outputs)
        layer2.forward(activation1.outputs)
        activation2.forward(layer2.outputs)
        cost.forward(activation2.outputs, labels[batch], 10)

        for sample in range(activation2.outputs.shape[1]):
            if np.argmax(activation2.outputs[:, sample]) == np.argmax(
                    labels[batch, sample]):
                correct += 1

        cost.backward(activation2.outputs, labels[batch], 10)
        activation2.backward(layer2.outputs, layer2.weights.shape[0],
                             BATCH_SIZE)
        layer2.backward(activation1.outputs)
        activation1.backward(layer1.outputs)
        layer1.backward(trainingData[batch])

        delta1 = np.zeros((cost.prime.shape[0], cost.prime.shape[1]))
        for i in range(cost.prime.shape[0]):
            delta1[i] = np.matmul(cost.prime[i], activation2.prime[i])

        delta1_wrt_L2 = np.matmul(delta1, layer2.input_prime)
        delta2 = np.zeros(
            (activation1.prime.shape[0], activation1.prime.shape[2]))
        for i in range(activation1.prime.shape[2]):
            delta2[:, i] = np.matmul(delta1_wrt_L2[i], activation1.prime[:, :,
                                                                         i])

        C_wrt_W2 = np.zeros(
            (delta1.shape[0], delta1.shape[1], layer2.weights_prime.shape[1]))
コード例 #3
0
ファイル: ex04.py プロジェクト: prospros001/deep-learning
    from layers import Sigmoid
except ImportError:
    print('Library Module Can Not Found')

# Test1(Vector)
layer = Sigmoid()

x = np.array([0.1, -0.2, 0.3, -0.4, 0.5])
print(x)

y = layer.forward(x)
print(y)
print(layer.out)

dout = np.array([-0.1, -0.2, -0.3, 0.4, -0.5])
dout = layer.backward(dout)
print(dout)

print('=========================================')

# Test2(Matrix)
x = np.array([
    [0.1, -0.5, 1.0],
    [0.2, -0.6, 2.0],
    [0.3, -0.7, 3.0],
    [0.4, -0.8, 4.0]
])
y = layer.forward(x)
print(y)
print(layer.out)