def forward(self, x1, x2, diag=False, **params):
        res = ZeroLazyTensor() if not diag else 0
        for kern in self.kernels:
            next_term = kern(x1, x2, diag=diag, **params)
            if not diag:
                res = res + lazify(next_term)
            else:
                res = res + next_term

        return res
コード例 #2
0
 def forward(self, x1, x2, diag=False, last_dim_is_batch=False, **params):
     if last_dim_is_batch:
         raise RuntimeError(
             "MultitaskKernel does not accept the last_dim_is_batch argument."
         )
     covar_i = self.task_covar_module.covar_matrix
     if len(x1.shape[:-2]):
         covar_i = covar_i.repeat(*x1.shape[:-2], 1, 1)
     covar_x = lazify(self.data_covar_module.forward(x1, x2, **params))
     res = KroneckerProductLazyTensor(covar_x, covar_i)
     return res.diag() if diag else res
コード例 #3
0
 def _exact_predictive_covar_inv_quad_form_cache(self,
                                                 train_train_covar_inv_root,
                                                 test_train_covar):
     test_train_covar = lazify(test_train_covar).evaluate_kernel()
     if not isinstance(test_train_covar, SumLazyTensor):
         return super(SumPredictionStrategy,
                      self)._exact_predictive_covar_inv_quad_form_cache(
                          train_train_covar_inv_root, test_train_covar)
     else:
         return tuple(
             sub_strat._exact_predictive_covar_inv_quad_form_cache(
                 train_train_covar_inv_root, test_train_covar_comp)
             for sub_strat, test_train_covar_comp in zip(
                 self._sub_strategies, test_train_covar.lazy_tensors))
コード例 #4
0
    def _shaped_noise_covar(self, base_shape, *params):
        if len(base_shape) >= 2:
            *batch_shape, n, _ = base_shape
        else:
            *batch_shape, n = base_shape

        # compute the noise covariance
        if len(params) > 0:
            shape = None
        else:
            shape = base_shape if len(base_shape) == 1 else base_shape[:-1]
        noise_covar = self.noise_covar(*params, shape=shape)

        if self.rank > 0:
            # if rank > 0, compute the task correlation matrix
            # TODO: This is inefficient, change repeat so it can repeat LazyTensors w/ multiple batch dimensions
            task_corr = self._eval_corr_matrix()
            exp_shape = torch.Size([*batch_shape, n]) + task_corr.shape[-2:]
            task_corr_exp = lazify(task_corr.unsqueeze(-3).expand(exp_shape))
            noise_sem = noise_covar.sqrt()
            task_covar_blocks = MatmulLazyTensor(
                MatmulLazyTensor(noise_sem, task_corr_exp), noise_sem)
        else:
            # otherwise tasks are uncorrelated
            if isinstance(noise_covar, DiagLazyTensor):
                flattened_diag = noise_covar._diag.view(
                    *noise_covar._diag.shape[:-2], -1)
                return DiagLazyTensor(flattened_diag)
            task_covar_blocks = noise_covar
        if len(batch_shape) == 1:
            # TODO: Properly support general batch shapes in BlockDiagLazyTensor (no shape arithmetic)
            tcb_eval = task_covar_blocks.evaluate()
            task_covar = BlockDiagLazyTensor(lazify(tcb_eval), block_dim=-3)
        else:
            task_covar = BlockDiagLazyTensor(task_covar_blocks)

        return task_covar
    def forward(self, x1, x2, diag=False, **params):
        x1_eq_x2 = torch.equal(x1, x2)

        if not x1_eq_x2:
            # If x1 != x2, then we can't make a MulLazyTensor because the kernel won't necessarily be square/symmetric
            res = delazify(self.kernels[0](x1, x2, diag=diag, **params))
        else:
            res = self.kernels[0](x1, x2, diag=diag, **params)

            if not diag:
                res = lazify(res)

        for kern in self.kernels[1:]:
            next_term = kern(x1, x2, diag=diag, **params)
            if not x1_eq_x2:
                # Again delazify if x1 != x2
                res = res * delazify(next_term)
            else:
                if not diag:
                    res = res * lazify(next_term)
                else:
                    res = res * next_term

        return res
コード例 #6
0
 def _exact_predictive_covar_inv_quad_form_root(self, precomputed_cache,
                                                test_train_covar):
     # Here the precomputed cache is a list
     # where each component in the list is the precomputed cache for each component lazy tensor
     test_train_covar = lazify(test_train_covar).evaluate_kernel()
     if not isinstance(test_train_covar, SumLazyTensor):
         return super(SumPredictionStrategy,
                      self)._exact_predictive_covar_inv_quad_form_root(
                          precomputed_cache, test_train_covar)
     else:
         return sum(
             sub_strat._exact_predictive_covar_inv_quad_form_root(
                 cache_comp, test_train_covar_comp)
             for sub_strat, cache_comp, test_train_covar_comp in zip(
                 self._sub_strategies, precomputed_cache,
                 test_train_covar.evaluate_kernel().lazy_tensors))
    def to_data_independent_dist(self):
        """
        Convert a multitask MVN into a batched (non-multitask) MVNs
        The result retains the intertask covariances, but gets rid of the inter-data covariances.
        The resulting distribution will have :attr:`len(mvns)` tasks, and the tasks will be independent.

        :returns: the bached data-independent MVN
        :rtype: gpytorch.distributions.MultivariateNormal
        """
        # Create batch distribution where all data are independent, but the tasks are dependent
        full_covar = self.lazy_covariance_matrix
        num_data, num_tasks = self.mean.shape[-2:]
        data_indices = torch.arange(0,
                                    num_data * num_tasks,
                                    num_tasks,
                                    device=full_covar.device).view(-1, 1, 1)
        task_indices = torch.arange(num_tasks, device=full_covar.device)
        task_covars = full_covar[...,
                                 data_indices + task_indices.unsqueeze(-2),
                                 data_indices + task_indices.unsqueeze(-1)]
        return MultivariateNormal(self.mean, lazify(task_covars).add_jitter())
コード例 #8
0
    def __call__(self,
                 x1_,
                 x2_=None,
                 diag=False,
                 last_dim_is_batch=False,
                 **params):
        """
        We cannot lazily evaluate actual kernel calls when using SKIP, because we
        cannot root decompose rectangular matrices.

        Because we slice in to the kernel during prediction to get the test x train
        covar before calling evaluate_kernel, the order of operations would mean we
        would get a MulLazyTensor representing a rectangular matrix, which we
        cannot matmul with because we cannot root decompose it. Thus, SKIP actually
        *requires* that we work with the full (train + test) x (train + test)
        kernel matrix.
        """
        res = super().__call__(x1_,
                               x2_,
                               diag=diag,
                               last_dim_is_batch=last_dim_is_batch,
                               **params)
        res = lazify(res).evaluate_kernel()
        return res
コード例 #9
0
 def gather(self, outputs, output_device):
     return CatLazyTensor(*[lazify(o) for o in outputs],
                          dim=self.dim,
                          output_device=self.output_device)
    def __call__(self,
                 x1,
                 x2=None,
                 diag=False,
                 last_dim_is_batch=False,
                 **params):
        x1_, x2_ = x1, x2

        # Select the active dimensions
        if self.active_dims is not None:
            x1_ = x1_.index_select(-1, self.active_dims)
            if x2_ is not None:
                x2_ = x2_.index_select(-1, self.active_dims)

        # Give x1_ and x2_ a last dimension, if necessary
        if x1_.ndimension() == 1:
            x1_ = x1_.unsqueeze(1)
        if x2_ is not None:
            if x2_.ndimension() == 1:
                x2_ = x2_.unsqueeze(1)
            if not x1_.size(-1) == x2_.size(-1):
                raise RuntimeError(
                    "x1_ and x2_ must have the same number of dimensions!")

        if x2_ is None:
            x2_ = x1_

        # Check that ard_num_dims matches the supplied number of dimensions
        if settings.debug.on():
            if self.ard_num_dims is not None and self.ard_num_dims != x1_.size(
                    -1):
                raise RuntimeError(
                    "Expected the input to have {} dimensionality "
                    "(based on the ard_num_dims argument). Got {}.".format(
                        self.ard_num_dims, x1_.size(-1)))

        if diag:
            res = super(Kernel,
                        self).__call__(x1_,
                                       x2_,
                                       diag=True,
                                       last_dim_is_batch=last_dim_is_batch,
                                       **params)
            # Did this Kernel eat the diag option?
            # If it does not return a LazyEvaluatedKernelTensor, we can call diag on the output
            if not isinstance(res, LazyEvaluatedKernelTensor):
                if res.dim() == x1_.dim() and res.shape[-2:] == torch.Size(
                    (x1_.size(-2), x2_.size(-2))):
                    res = res.diag()
            return res

        else:
            if settings.lazily_evaluate_kernels.on():
                res = LazyEvaluatedKernelTensor(
                    x1_,
                    x2_,
                    kernel=self,
                    last_dim_is_batch=last_dim_is_batch,
                    **params)
            else:
                res = lazify(
                    super(Kernel,
                          self).__call__(x1_,
                                         x2_,
                                         last_dim_is_batch=last_dim_is_batch,
                                         **params))
            return res
    def forward(self, x1, x2, diag=False, last_dim_is_batch=False, **params):
        # See if we need to update the grid or not
        if self.grid_is_dynamic:  # This is true if a grid_bounds wasn't passed in
            if torch.equal(x1, x2):
                x = x1.reshape(-1, self.num_dims)
            else:
                x = torch.cat([
                    x1.reshape(-1, self.num_dims),
                    x2.reshape(-1, self.num_dims)
                ])
            x_maxs = x.max(0)[0].tolist()
            x_mins = x.min(0)[0].tolist()

            # We need to update the grid if
            # 1) it hasn't ever been initialized, or
            # 2) if any of the grid points are "out of bounds"
            update_grid = (not self.has_initialized_grid.item()) or any(
                x_min < bound[0] or x_max > bound[1]
                for x_min, x_max, bound in zip(x_mins, x_maxs,
                                               self._tight_grid_bounds))

            # Update the grid if needed
            if update_grid:
                grid_spacings = tuple((x_max - x_min) / (gs - 4.02)
                                      for gs, x_min, x_max in zip(
                                          self.grid_sizes, x_mins, x_maxs))
                self.grid_bounds = tuple(
                    (x_min - 2.01 * spacing, x_max + 2.01 * spacing)
                    for x_min, x_max, spacing in zip(x_mins, x_maxs,
                                                     grid_spacings))
                grid = create_grid(
                    self.grid_sizes,
                    self.grid_bounds,
                    dtype=self.grid[0].dtype,
                    device=self.grid[0].device,
                )
                self.update_grid(grid)

        base_lazy_tsr = lazify(
            self._inducing_forward(last_dim_is_batch=last_dim_is_batch,
                                   **params))
        if last_dim_is_batch and base_lazy_tsr.size(-3) == 1:
            base_lazy_tsr = base_lazy_tsr.repeat(*x1.shape[:-2], x1.size(-1),
                                                 1, 1)

        left_interp_indices, left_interp_values = self._compute_grid(
            x1, last_dim_is_batch)
        if torch.equal(x1, x2):
            right_interp_indices = left_interp_indices
            right_interp_values = left_interp_values
        else:
            right_interp_indices, right_interp_values = self._compute_grid(
                x2, last_dim_is_batch)

        batch_shape = _mul_broadcast_shape(
            base_lazy_tsr.batch_shape,
            left_interp_indices.shape[:-2],
            right_interp_indices.shape[:-2],
        )
        res = InterpolatedLazyTensor(
            base_lazy_tsr.expand(*batch_shape, *base_lazy_tsr.matrix_shape),
            left_interp_indices.detach().expand(
                *batch_shape, *left_interp_indices.shape[-2:]),
            left_interp_values.expand(*batch_shape,
                                      *left_interp_values.shape[-2:]),
            right_interp_indices.detach().expand(
                *batch_shape, *right_interp_indices.shape[-2:]),
            right_interp_values.expand(*batch_shape,
                                       *right_interp_values.shape[-2:]),
        )

        if diag:
            return res.diag()
        else:
            return res
コード例 #12
0
    def exact_predictive_covar(self, test_test_covar, test_train_covar):
        """
        Computes the posterior predictive covariance of a GP

        Args:
            test_train_covar (:obj:`gpytorch.lazy.LazyTensor`): Covariance matrix between test and train inputs
            test_test_covar (:obj:`gpytorch.lazy.LazyTensor`): Covariance matrix between test inputs

        Returns:
            :obj:`gpytorch.lazy.LazyTensor`: A LazyTensor representing the predictive posterior covariance of the
                                               test points
        """
        if settings.fast_pred_var.on():
            self._last_test_train_covar = test_train_covar

        if settings.skip_posterior_variances.on():
            return ZeroLazyTensor(*test_test_covar.size())

        if settings.fast_pred_var.off():
            dist = self.train_prior_dist.__class__(
                torch.zeros_like(self.train_prior_dist.mean),
                self.train_prior_dist.lazy_covariance_matrix)
            if settings.detach_test_caches.on():
                train_train_covar = self.likelihood(
                    dist, self.train_inputs).lazy_covariance_matrix.detach()
            else:
                train_train_covar = self.likelihood(
                    dist, self.train_inputs).lazy_covariance_matrix

            test_train_covar = delazify(test_train_covar)
            train_test_covar = test_train_covar.transpose(-1, -2)
            covar_correction_rhs = train_train_covar.inv_matmul(
                train_test_covar)
            # For efficiency
            if torch.is_tensor(test_test_covar):
                # We can use addmm in the 2d case
                if test_test_covar.dim() == 2:
                    return lazify(
                        torch.addmm(test_test_covar,
                                    test_train_covar,
                                    covar_correction_rhs,
                                    beta=1,
                                    alpha=-1))
                else:
                    return lazify(
                        test_test_covar +
                        test_train_covar @ covar_correction_rhs.mul(-1))
            # In other cases - we'll use the standard infrastructure
            else:
                return test_test_covar + MatmulLazyTensor(
                    test_train_covar, covar_correction_rhs.mul(-1))

        precomputed_cache = self.covar_cache
        covar_inv_quad_form_root = self._exact_predictive_covar_inv_quad_form_root(
            precomputed_cache, test_train_covar)
        if torch.is_tensor(test_test_covar):
            return lazify(
                torch.add(test_test_covar,
                          covar_inv_quad_form_root
                          @ covar_inv_quad_form_root.transpose(-1, -2),
                          alpha=-1))
        else:
            return test_test_covar + MatmulLazyTensor(
                covar_inv_quad_form_root,
                covar_inv_quad_form_root.transpose(-1, -2).mul(-1))