コード例 #1
0
    def _get_available_classifier_factories(self):
        # FIXME: Replace this logic with a proper plugin mechanism
        from lazyflow.classifiers import VigraRfLazyflowClassifierFactory, SklearnLazyflowClassifierFactory, \
                                         ParallelVigraRfLazyflowClassifierFactory, VigraRfPixelwiseClassifierFactory,\
                                         LazyflowVectorwiseClassifierFactoryABC, LazyflowPixelwiseClassifierFactoryABC
        classifiers = OrderedDict()
        classifiers["Parallel Random Forest (VIGRA)"] = ParallelVigraRfLazyflowClassifierFactory(100)
        
        try:
            from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
            from sklearn.naive_bayes import GaussianNB
            from sklearn.tree import DecisionTreeClassifier
            from sklearn.neighbors import KNeighborsClassifier
            from sklearn.lda import LDA
            from sklearn.qda import QDA
            from sklearn.svm import SVC, NuSVC
            classifiers["Random Forest (scikit-learn)"] = SklearnLazyflowClassifierFactory( RandomForestClassifier, 100 )
            classifiers["Gaussian Naive Bayes (scikit-learn)"] = SklearnLazyflowClassifierFactory( GaussianNB )
            classifiers["AdaBoost (scikit-learn)"] = SklearnLazyflowClassifierFactory( AdaBoostClassifier, n_estimators=100 )
            classifiers["Single Decision Tree (scikit-learn)"] = SklearnLazyflowClassifierFactory( DecisionTreeClassifier, max_depth=5 )
            classifiers["K-Neighbors (scikit-learn)"] = SklearnLazyflowClassifierFactory( KNeighborsClassifier )
            classifiers["LDA (scikit-learn)"] = SklearnLazyflowClassifierFactory( LDA )
            classifiers["QDA (scikit-learn)"] = SklearnLazyflowClassifierFactory( QDA )
            classifiers["SVM C-Support (scikit-learn)"] = SklearnLazyflowClassifierFactory( SVC, probability=True )
            classifiers["SVM Nu-Support (scikit-learn)"] = SklearnLazyflowClassifierFactory( NuSVC, probability=True )
        except ImportError:
            import warnings
            warnings.warn("Couldn't import sklearn. Scikit-learn classifiers not available.")

        # Debug classifiers
        classifiers["Parallel Random Forest with Variable Importance (VIGRA)"] = ParallelVigraRfLazyflowClassifierFactory(100, variable_importance_enabled=True)        
        classifiers["(debug) Single-threaded Random Forest (VIGRA)"] = VigraRfLazyflowClassifierFactory(100)
        classifiers["(debug) Pixelwise Random Forest (VIGRA)"] = VigraRfPixelwiseClassifierFactory(100)
        
        return classifiers
コード例 #2
0
    def testBasic(self):
        features = numpy.indices((100, 100)).astype(numpy.float) + 0.5
        features = numpy.rollaxis(features, 0, 3)
        features = vigra.taggedView(features, 'xyc')
        labels = numpy.zeros((100, 100, 1), dtype=numpy.uint8)
        labels = vigra.taggedView(labels, 'xyc')

        labels[10, 10] = 1
        labels[10, 11] = 1
        labels[20, 20] = 2
        labels[20, 21] = 2

        graph = Graph()
        opFeatureMatrixCache = OpFeatureMatrixCache(graph=graph)
        opFeatureMatrixCache.FeatureImage.setValue(features)
        opFeatureMatrixCache.LabelImage.setValue(labels)
        opFeatureMatrixCache.NonZeroLabelBlocks.setValue(0)

        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[10:11, 10:12])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[20:21, 20:22])
        opFeatureMatrixCache.LabelImage.setDirty(numpy.s_[30:31, 30:32])

        opTrain = OpTrainClassifierFromFeatureVectors(graph=graph)
        opTrain.ClassifierFactory.setValue(
            VigraRfLazyflowClassifierFactory(10))
        opTrain.MaxLabel.setValue(2)
        opTrain.LabelAndFeatureMatrix.connect(
            opFeatureMatrixCache.LabelAndFeatureMatrix)

        trained_classifer = opTrain.Classifier.value

        # This isn't much of a test at the moment...
        assert isinstance(trained_classifer, VigraRfLazyflowClassifier)
コード例 #3
0
    def testBasic(self):
        features = numpy.indices( (100,100) ).astype(numpy.float) + 0.5
        features = numpy.rollaxis(features, 0, 3)
        features = vigra.taggedView(features, 'xyc')
        labels = numpy.zeros( (100,100,1), dtype=numpy.uint8 )
        labels = vigra.taggedView(labels, 'xyc')
        
        labels[10,10] = 1
        labels[10,11] = 1
        labels[20,20] = 2
        labels[20,21] = 2

        graph = Graph()
        opTrain = OpTrainClassifierBlocked( graph=graph )
        opTrain.ClassifierFactory.setValue( VigraRfLazyflowClassifierFactory(10) )
        opTrain.Images.resize(1)
        opTrain.Labels.resize(1)
        opTrain.nonzeroLabelBlocks.resize(1)
        opTrain.Images[0].setValue( features )
        opTrain.Labels[0].setValue( labels )
        opTrain.nonzeroLabelBlocks[0].setValue(0) # Dummy for now (not used by operator yet)
        opTrain.MaxLabel.setValue(2)
                
        opTrain.Labels[0].setDirty( numpy.s_[10:11, 10:12] )
        opTrain.Labels[0].setDirty( numpy.s_[20:21, 20:22] )
        opTrain.Labels[0].setDirty( numpy.s_[30:31, 30:32] )
        
        trained_classifier = opTrain.Classifier.value
        
        # This isn't much of a test at the moment...
        assert isinstance( trained_classifier, VigraRfLazyflowClassifier )
コード例 #4
0
ファイル: rf.py プロジェクト: burgerdev/hostload
    def execute(self, slot, subindex, roi, result):
        assert len(self.Train) == 2, "need data and target"
        assert len(self.Valid) == 2, "need data and target"
        assert roi.start[0] == 0
        assert roi.stop[0] == 1

        train = self.Train[0][...].wait()
        valid = self.Valid[0][...].wait()
        X = np.concatenate((train, valid), axis=0)

        assert len(self.Train[1].meta.shape) == 2,\
            "target needs to be a matrix"
        assert len(self.Valid[1].meta.shape) == 2,\
            "target needs to be a matrix"
        train = self.Train[1][...].wait()
        valid = self.Valid[1][...].wait()
        y = np.concatenate((train, valid), axis=0)

        y = np.argmax(y, axis=1)

        factory = VigraRfLazyflowClassifierFactory()
        classifier = factory.create_and_train(X, y)
        result[0] = classifier