コード例 #1
0
class TestSlot_notifyMetaChanged(object):
    def setUp(self):
        self.g = Graph()

    def tearDown(self):
        self.g.stopGraph()

    def test_inputslot_changed(self):
        # test that the changed callback is called
        # when the slot meta information changes
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        # test normal InputSlot
        opa.Input1.notifyMetaChanged(callBack)
        opa.Input1.connect(ops.Output1)
        assert upval[0] == True

        upval[0] = False
        opa.Input1.connect(ops.Output2)
        assert upval[0] == True

        # test InputSlot with default value
        upval[0] = False
        opa.Input3.notifyMetaChanged(callBack)
        opa.Input3.connect(ops.Output1)
        assert upval[0] == True

        upval[0] = False
コード例 #2
0
class TestOutputOutputConnection(object):

    def setUp(self):
        self.g = Graph()
        self.op = OpOuter(graph=self.g)

    def tearDown(self):
        self.g.stopGraph()

    def test_value(self):
        """
        This test checks, that requests produce correct
        results in the case of output-output connections
        (the o-o connection exists inside the OpOuter...
        """
        self.op.Input.setValue(True)
        result = self.op.Output[:].wait()[0]
        assert result == True, "result = %r" % result
        self.op.Input.setValue(False)
        result = self.op.Output[:].wait()[0]
        assert result == False, "result = %r" % result

    def test_execute(self):
        """
        This test checks that the execute method of the outer
        operator is not called, when the output slot of the
        op is connect to the output slot of another (inner) operator
        """
        self.op.Input.setValue(True)
        self.op._was_executed = False
        result = self.op.Output[:].wait()[0]
        assert self.op._was_executed is False
コード例 #3
0
class TestMultiInputInputConnection(object):

    def setUp(self):
        self.g = Graph()
        self.op = OpC(graph=self.g)

    def tearDown(self):
        self.g.stopGraph()

    def test_wrapping(self):
        opm = operators.Op5ToMulti(graph=self.g)
        opm.Input0.setValue(1)

        self.op.Input.connect(opm.Outputs)

        assert len(self.op.internalOp.Output) == 1
        assert self.op.internalOp.Output[0].meta.shape is not None
        assert self.op.internalOp.Output[0].value == 1
コード例 #4
0
class TestInputInputConnection(object):

    def setUp(self):
        self.g = Graph()
        self.op = OpA(graph=self.g)

    def tearDown(self):
        self.g.stopGraph()

    def test_value(self):
        self.op.Input.setValue(True)
        result = self.op.Output[:].allocate().wait()[0]
        assert result == True, "result = %r" % result
        self.op.Input.setValue(False)
        result = self.op.Output[:].allocate().wait()[0]
        assert result == False, "result = %r" % result

    def test_disconnect(self):
        self.op.internalOp.Input.disconnect()
        self.op.internalOp.Input.connect(self.op.Input)


    def test_wrapping(self):
        opm = operators.Op5ToMulti(graph=self.g)
        opm.Input0.setValue(1)

        op = OperatorWrapper( OpA, graph=self.g )
        op.Input.connect(opm.Outputs)
        result = op.Output[0][:].allocate().wait()[0]
        assert result == 1

        opm.Input1.setValue(2)
        result = op.Output[1][:].allocate().wait()[0]
        assert result == 2

        # Note: operator wrappers do not "restore" back to unwrapped operators after disconnect
        # (That was their behavior at some point, but no longer.)
        op.Input.disconnect()
        op.Input.resize(0)
        op.Input.setValue(2)
        assert len(op.Input) == 0
        assert len(op.Output) == 0
コード例 #5
0
class Main(QMainWindow):    
    haveData        = pyqtSignal()
    dataReadyToView = pyqtSignal()
        
    def __init__(self, argv):
        QMainWindow.__init__(self)
        
        #Normalize the data if true
        self._normalize_data=True
        
        if 'notnormalize' in sys.argv:
            print sys.argv
            self._normalize_data=False
            sys.argv.remove('notnormalize')

        self.opPredict = None
        self.opTrain = None
        self.opThreshold = None
        self._colorTable16 = self._createDefault16ColorColorTable()
        
        #self.g = Graph(7, 2048*1024**2*5)
        self.g = Graph()
        self.fixableOperators = []
        
        self.featureDlg=None

        
        #The old ilastik provided the following scale names:
        #['Tiny', 'Small', 'Medium', 'Large', 'Huge', 'Megahuge', 'Gigahuge']
        #The corresponding scales are:
        self.featScalesList=[0.3, 0.7, 1, 1.6, 3.5, 5.0, 10.0]
        
        self.initUic()
        
        #if the filename was specified on command line, load it
        if len(sys.argv) >= 2:
            def loadFile():
                self._openFile(sys.argv[1:])
            QTimer.singleShot(0, loadFile)
        
    def setIconToViewMenu(self):
            self.actionOnly_for_current_view.setIcon(QIcon(self.editor.imageViews[self.editor._lastImageViewFocus]._hud.axisLabel.pixmap()))
        
    def initUic(self):
        p = os.path.split(__file__)[0]+'/'
        if p == "/": p = "."+p
        uic.loadUi(p+"MainWindow_cc.ui", self) 
        #connect the window and graph creation to the opening of the file
        self.actionOpen.triggered.connect(self.openFile)
        self.actionQuit.triggered.connect(qApp.quit)
        
        def toggleDebugPatches(show):
            self.editor.showDebugPatches = show
        def fitToScreen():
            shape = self.editor.posModel.shape
            for i, v in enumerate(self.editor.imageViews):
                s = list(copy.copy(shape))
                del s[i]
                v.changeViewPort(v.scene().data2scene.mapRect(QRectF(0,0,*s)))  
                
        def fitImage():
            if hasattr(self.editor, '_lastImageViewFocus'):
                self.editor.imageViews[self.editor._lastImageViewFocus].fitImage()
                
        def restoreImageToOriginalSize():
            if hasattr(self.editor, '_lastImageViewFocus'):
                self.editor.imageViews[self.editor._lastImageViewFocus].doScaleTo()
                    
        def rubberBandZoom():
            if hasattr(self.editor, '_lastImageViewFocus'):
                if not self.editor.imageViews[self.editor._lastImageViewFocus]._isRubberBandZoom:
                    self.editor.imageViews[self.editor._lastImageViewFocus]._isRubberBandZoom = True
                    self.editor.imageViews[self.editor._lastImageViewFocus]._cursorBackup = self.editor.imageViews[self.editor._lastImageViewFocus].cursor()
                    self.editor.imageViews[self.editor._lastImageViewFocus].setCursor(Qt.CrossCursor)
                else:
                    self.editor.imageViews[self.editor._lastImageViewFocus]._isRubberBandZoom = False
                    self.editor.imageViews[self.editor._lastImageViewFocus].setCursor(self.editor.imageViews[self.editor._lastImageViewFocus]._cursorBackup)
                
        
        def hideHud():
            if self.editor.imageViews[0]._hud.isVisible():
                hide = False
            else:
                hide = True
            for i, v in enumerate(self.editor.imageViews):
                v.hideHud(hide)
                
        def toggleSelectedHud():
            if hasattr(self.editor, '_lastImageViewFocus'):
                self.editor.imageViews[self.editor._lastImageViewFocus].toggleHud()
                
        def centerAllImages():
            for i, v in enumerate(self.editor.imageViews):
                v.centerImage()
                
        def centerImage():
            if hasattr(self.editor, '_lastImageViewFocus'):
                self.editor.imageViews[self.editor._lastImageViewFocus].centerImage()
                self.actionOnly_for_current_view.setEnabled(True)
        
        self.actionCenterAllImages.triggered.connect(centerAllImages)
        self.actionCenterImage.triggered.connect(centerImage)
        self.actionToggleAllHuds.triggered.connect(hideHud)
        self.actionToggleSelectedHud.triggered.connect(toggleSelectedHud)
        self.actionShowDebugPatches.toggled.connect(toggleDebugPatches)
        self.actionFitToScreen.triggered.connect(fitToScreen)
        self.actionFitImage.triggered.connect(fitImage)
        self.actionReset_zoom.triggered.connect(restoreImageToOriginalSize)
        self.actionRubberBandZoom.triggered.connect(rubberBandZoom)
        
        self.haveData.connect(self.initGraph)
        self.dataReadyToView.connect(self.initEditor)
        
        self.layerstack = LayerStackModel()
        
        model = LabelListModel()
        self.labelListView.setModel(model)
        self.labelListModel=model
        
        self.labelListModel.rowsAboutToBeRemoved.connect(self.onLabelAboutToBeRemoved)
        self.labelListModel.labelSelected.connect(self.switchLabel)
        
        def onDataChanged(topLeft, bottomRight):
            firstRow = topLeft.row()
            lastRow  = bottomRight.row()
        
            firstCol = topLeft.column()
            lastCol  = bottomRight.column()
            
            if lastCol == firstCol == 0:
                assert(firstRow == lastRow) #only one data item changes at a time

                #in this case, the actual data (for example color) has changed
                self.switchColor(firstRow+1, self.labelListModel[firstRow].color)
                self.editor.scheduleSlicesRedraw()
            else:
                #this column is used for the 'delete' buttons, we don't care
                #about data changed here
                pass
            
        self.labelListModel.dataChanged.connect(onDataChanged)
        
        self.AddLabelButton.clicked.connect(self.addLabel)
        
        self.SelectFeaturesButton.clicked.connect(self.onFeatureButtonClicked)
        self.StartClassificationButton.clicked.connect(self.startClassification)        
        self.StartClassificationButton.setEnabled(False)

        self.checkInteractive.setEnabled(False)
        self.checkInteractive.toggled.connect(self.toggleInteractive)   

        self.interactionComboBox.currentIndexChanged.connect(self.changeInteractionMode)
        self.interactionComboBox.setEnabled(False)

        self.AddThresholdButton.clicked.connect(self.addThresholdOperator)
        self.AddThresholdButton.setEnabled(False)
        self.CCButton.clicked.connect(self.addCCOperator)
        self.CCButton.setEnabled(False)

        self._initFeatureDlg()
        
    def toggleInteractive(self, checked):
        print "toggling interactive mode to '%r'" % checked
        
        #Check if the number of labels in the layer stack is equals to the number of Painted labels
        if checked==True:
            labels =numpy.unique(numpy.asarray(self.opLabels.outputs["nonzeroValues"][:].allocate().wait()[0]))           
            nPaintedLabels=labels.shape[0]
            nLabelsLayers = self.labelListModel.rowCount()
            selectedFeatures = numpy.asarray(self.featureDlg.featureTableWidget.createSelectedFeaturesBoolMatrix())
            
            if nPaintedLabels!=nLabelsLayers:
                self.checkInteractive.setCheckState(0)
                mexBox=QMessageBox()
                mexBox.setText("Did you forget to paint some labels?")
                mexBox.setInformativeText("Painted Labels %d \nNumber Active Labels Layers %d"%(nPaintedLabels,self.labelListModel.rowCount()))
                mexBox.exec_()
                return
            if (selectedFeatures==0).all():
                self.checkInteractive.setCheckState(0)
                mexBox=QMessageBox()
                mexBox.setText("The are no features selected ")
                mexBox.exec_()
                return
        else:
            self.g.stopGraph()
            self.g.resumeGraph()
                
        self.AddLabelButton.setEnabled(not checked)
        self.SelectFeaturesButton.setEnabled(not checked)
        for o in self.fixableOperators:
            o.inputs["fixAtCurrent"].setValue(not checked)
        self.labelListModel.allowRemove(not checked)
        
        self.editor.scheduleSlicesRedraw()

    def changeInteractionMode( self, index ):
        modes = {0: "navigation", 1: "brushing"}
        self.editor.setInteractionMode( modes[index] )
        self.interactionComboBox.setCurrentIndex(index)
        print "interaction mode switched to", modes[index]

    def switchLabel(self, row):
        print "switching to label=%r" % (self.labelListModel[row])
        #+1 because first is transparent
        #FIXME: shouldn't be just row+1 here
        self.editor.brushingModel.setDrawnNumber(row+1)
        self.editor.brushingModel.setBrushColor(self.labelListModel[row].color)
        
    def switchColor(self, row, color):
        print "label=%d changes color to %r" % (row, color)
        self.labellayer.colorTable[row]=color.rgba()
        self.editor.brushingModel.setBrushColor(color)
        self.editor.scheduleSlicesRedraw()
    
    def addLabel(self):
        color = QColor(numpy.random.randint(0,255), numpy.random.randint(0,255), numpy.random.randint(0,255))
        numLabels = len(self.labelListModel)
        if numLabels < len(self._colorTable16):
            color = self._colorTable16[numLabels]
        self.labellayer.colorTable.append(color.rgba())
        
        self.labelListModel.insertRow(self.labelListModel.rowCount(), Label("Label %d" % (self.labelListModel.rowCount() + 1), color))
        nlabels = self.labelListModel.rowCount()
        if self.opPredict is not None:
            print "Label added, changing predictions"
            #re-train the forest now that we have more labels
            self.opPredict.inputs['LabelsCount'].setValue(nlabels)
            self.addPredictionLayer(nlabels-1, self.labelListModel._labels[nlabels-1])
        
        #make the new label selected
        index = self.labelListModel.index(nlabels-1, 1)
        self.labelListModel._selectionModel.select(index, QItemSelectionModel.ClearAndSelect)
        
        #FIXME: this should watch for model changes   
        #drawing will be enabled when the first label is added  
        self.changeInteractionMode( 1 )
        self.interactionComboBox.setEnabled(True)
    
    def onLabelAboutToBeRemoved(self, parent, start, end):
        #the user deleted a label, reshape prediction and remove the layer
        #the interface only allows to remove one label at a time?
        
        nout = start-end+1
        ncurrent = self.labelListModel.rowCount()
        print "removing", nout, "out of ", ncurrent
        
        if self.opPredict is not None:
            self.opPredict.inputs['LabelsCount'].setValue(ncurrent-nout)
        for il in range(start, end+1):
            labelvalue = self.labelListModel._labels[il]
            self.removePredictionLayer(labelvalue)
            self.opLabels.inputs["deleteLabel"].setValue(il+1)
            self.editor.scheduleSlicesRedraw()
            
    
    def startClassification(self):
        if self.opTrain is None:
            #initialize all classification operators
            print "initializing classification..."
            opMultiL = Op5ToMulti(self.g)    
            opMultiL.inputs["Input0"].connect(self.opLabels.outputs["Output"])
            
            opMultiLblocks = Op5ToMulti(self.g)
            opMultiLblocks.inputs["Input0"].connect(self.opLabels.outputs["nonzeroBlocks"])
            self.opTrain = OpTrainRandomForestBlocked(self.g)
            self.opTrain.inputs['Labels'].connect(opMultiL.outputs["Outputs"])
            self.opTrain.inputs['Images'].connect(self.opFeatureCache.outputs["Output"])
            self.opTrain.inputs["nonzeroLabelBlocks"].connect(opMultiLblocks.outputs["Outputs"])
            self.opTrain.inputs['fixClassifier'].setValue(False)                
            
            opClassifierCache = OpArrayCache(self.g)
            opClassifierCache.inputs["Input"].connect(self.opTrain.outputs['Classifier'])
           
            ################## Prediction
            self.opPredict=OpPredictRandomForest(self.g)
            nclasses = self.labelListModel.rowCount()
            self.opPredict.inputs['LabelsCount'].setValue(nclasses)
            self.opPredict.inputs['Classifier'].connect(opClassifierCache.outputs['Output']) 
            self.opPredict.inputs['Image'].connect(self.opPF.outputs["Output"])

            pCache = OpSlicedBlockedArrayCache(self.g)
            pCache.inputs["fixAtCurrent"].setValue(False)
            pCache.inputs["innerBlockShape"].setValue(((1,256,256,1,2),(1,256,1,256,2),(1,1,256,256,2)))
            pCache.inputs["outerBlockShape"].setValue(((1,256,256,4,2),(1,256,4,256,2),(1,4,256,256,2)))
            pCache.inputs["Input"].connect(self.opPredict.outputs["PMaps"])
            self.pCache = pCache
  
            #add prediction results for all classes as separate channels
            for icl in range(nclasses):
                self.addPredictionLayer(icl, self.labelListModel._labels[icl])
        self.StartClassificationButton.setEnabled(False)
        self.checkInteractive.setEnabled(True)
        self.AddThresholdButton.setEnabled(True)
                                  
    def addPredictionLayer(self, icl, ref_label):
        
        selector=OpSingleChannelSelector(self.g)
        selector.inputs["Input"].connect(self.pCache.outputs['Output'])
        selector.inputs["Index"].setValue(icl)
                
        if self.checkInteractive.isChecked():
            self.pCache.inputs["fixAtCurrent"].setValue(False)
        else:
            self.pCache.inputs["fixAtCurrent"].setValue(True)
        
        predictsrc = LazyflowSource(selector.outputs["Output"][0])
        def srcName(newName):
            predictsrc.setObjectName("Prediction for %s" % ref_label.name)
        srcName("")
        
        predictLayer = AlphaModulatedLayer(predictsrc, tintColor=ref_label.color)
        predictLayer.nameChanged.connect(srcName)
        
        def setLayerColor(c):
            print "as the color of label '%s' has changed, setting layer's '%s' tint color to %r" % (ref_label.name, predictLayer.name, c)
            predictLayer.tintColor = c
        ref_label.colorChanged.connect(setLayerColor)
        def setLayerName(n):
            newName = "Prediction for %s" % ref_label.name
            print "as the name of label '%s' has changed, setting layer's '%s' name to '%s'" % (ref_label.name, predictLayer.name, newName)
            predictLayer.name = newName
        setLayerName(ref_label.name)
        ref_label.nameChanged.connect(setLayerName)
        
        predictLayer.ref_object = ref_label
        #make sure that labels (index = 0) stay on top!
        self.layerstack.insert(1, predictLayer )
        self.fixableOperators.append(self.pCache)
               
    def removePredictionLayer(self, ref_label):
        for il, layer in enumerate(self.layerstack):
            if layer.ref_object==ref_label:
                print "found the prediction", layer.ref_object, ref_label
                self.layerstack.removeRows(il, 1)
                break
    
    def addThresholdOperator(self):
        if self.opThreshold is None:
            self.opThreshold = OpThreshold(self.g)
            self.opThreshold.inputs["Input"].connect(self.pCache.outputs["Output"])
        #channel, value = ThresholdDlg(self.labelListModel._labels)
        channel = 0
        value = 0.5
        ref_label = self.labelListModel._labels[channel]
        self.opThreshold.inputs["Channel"].setValue(channel)
        self.opThreshold.inputs["Threshold"].setValue(value)
        threshsrc = LazyflowSource(self.opThreshold.outputs["Output"][0])
        
        threshsrc.setObjectName("Threshold for %s" % ref_label.name)
        transparent = QColor(0,0,0,0)
        white = QColor(255,255,255)
        colorTable = [transparent.rgba(), white.rgba()]
        threshLayer = ColortableLayer(threshsrc, colorTable = colorTable )
        threshLayer.name = "Threshold for %s" % ref_label.name
        self.layerstack.insert(1, threshLayer)
        self.CCButton.setEnabled(True)
        
    def addCCOperator(self):
        self.opCC = OpConnectedComponents(self.g)
        self.opCC.inputs["Input"].connect(self.opThreshold.outputs["Output"])
        #we shouldn't have to define these. But just in case...
        self.opCC.inputs["Neighborhood"].setValue(6)
        self.opCC.inputs["Background"].setValue(0)
        
        ccsrc = LazyflowSource(self.opCC.outputs["Output"][0])
        ccsrc.setObjectName("Connected Components")
        ctb = colortables.create_default_16bit()
        ctb.insert(0, QColor(0, 0, 0, 0).rgba()) # make background transparent
        ccLayer = ColortableLayer(ccsrc, ctb)
        ccLayer.name = "Connected Components"
        self.layerstack.insert(1, ccLayer)
        
            
    def openFile(self):
        fileNames = QFileDialog.getOpenFileNames(self, "Open Image", os.path.abspath(__file__), "Numpy and h5 files (*.npy *.h5)")
        if fileNames.count() == 0:
            return
        self._openFile(fileNames)
        
    def _openFile(self, fileNames):
        self.inputProvider = None
        fName, fExt = os.path.splitext(str(fileNames[0]))
        print "Opening Files %r" % fileNames
        if fExt=='.npy':
            fileName = fileNames[0]
            if len(fileNames)>1:
                print "WARNING: only the first file will be read, multiple file prediction not supported yet"
            fName, fExt = os.path.splitext(str(fileName))
            self.raw = numpy.load(str(fileName))
            self.min, self.max = numpy.min(self.raw), numpy.max(self.raw)
            self.inputProvider = OpArrayPiper(self.g)
            self.raw = self.raw.view(vigra.VigraArray)
            self.raw.axistags =  vigra.AxisTags(
                vigra.AxisInfo('t',vigra.AxisType.Time),
                vigra.AxisInfo('x',vigra.AxisType.Space),
                vigra.AxisInfo('y',vigra.AxisType.Space),
                vigra.AxisInfo('z',vigra.AxisType.Space),
                vigra.AxisInfo('c',vigra.AxisType.Channels))
            self.inputProvider.inputs["Input"].setValue(self.raw)
        elif fExt=='.h5':
            readerNew=OpH5ReaderBigDataset(self.g)
            
            
            readerNew.inputs["Filenames"].setValue(fileNames)
            readerNew.inputs["hdf5Path"].setValue("volume/data")

            readerCache =  OpSlicedBlockedArrayCache(self.g)
            readerCache.inputs["fixAtCurrent"].setValue(False)
            readerCache.inputs["innerBlockShape"].setValue(((1,256,256,1,2),(1,256,1,256,2),(1,1,256,256,2)))
            readerCache.inputs["outerBlockShape"].setValue(((1,256,256,4,2),(1,256,4,256,2),(1,4,256,256,2)))
            readerCache.inputs["Input"].connect(readerNew.outputs["Output"])

            self.inputProvider = OpArrayPiper(self.g)
            self.inputProvider.inputs["Input"].connect(readerCache.outputs["Output"])
        else:
            raise RuntimeError("opening filenames=%r not supported yet" % fileNames)
        
        self.haveData.emit()
       
    def initGraph(self):
        shape = self.inputProvider.outputs["Output"].shape
        srcs    = []
        minMax = []
        normalize = []
        
        print "* Data has shape=%r" % (shape,)
        
        #create a layer for each channel of the input:
        slicer=OpMultiArraySlicer2(self.g)
        slicer.inputs["Input"].connect(self.inputProvider.outputs["Output"])
        slicer.inputs["AxisFlag"].setValue('c')
       
        nchannels = shape[-1]
        for ich in xrange(nchannels):
            data=slicer.outputs['Slices'][ich][:].allocate().wait()
            #find the minimum and maximum value for normalization
            mm = (numpy.min(data), numpy.max(data))
            print "  - channel %d: min=%r, max=%r" % (ich, mm[0], mm[1])
            minMax.append(mm)
            if self._normalize_data:
                normalize.append(mm)
            else:
                normalize.append((0,255))
            layersrc = LazyflowSource(slicer.outputs['Slices'][ich], priority = 100)
            layersrc.setObjectName("raw data channel=%d" % ich)
            srcs.append(layersrc)
            
        #FIXME: we shouldn't merge channels automatically, but for now it's prettier
        layer1 = None
        if nchannels == 1:
            layer1 = GrayscaleLayer(srcs[0], range=minMax[0], normalize=normalize[0])
            print "  - showing raw data as grayscale"
        elif nchannels==2:
            layer1 = RGBALayer(red  = srcs[0], normalizeR=normalize[0],
                               green = srcs[1], normalizeG=normalize[1], range=minMax[0:2]+[(0,255), (0,255)])
            print "  - showing channel 1 as red, channel 2 as green"
        elif nchannels==3:
            layer1 = RGBALayer(red   = srcs[0], normalizeR=normalize[0],
                               green = srcs[1], normalizeG=normalize[1],
                               blue  = srcs[2], normalizeB=normalize[2],
                               range = minMax[0:3])
            print "  - showing channel 1 as red, channel 2 as green, channel 3 as blue"
        else:
            print "only 1,2 or 3 channels supported so far"
            return
        print
        
        layer1.name = "Input data"
        layer1.ref_object = None
        self.layerstack.append(layer1)
        
        opImageList = Op5ToMulti(self.g)    
        opImageList.inputs["Input0"].connect(self.inputProvider.outputs["Output"])
        
        #init the features operator
        opPF = OpPixelFeaturesPresmoothed(self.g)
        opPF.inputs["Input"].connect(opImageList.outputs["Outputs"])
        opPF.inputs["Scales"].setValue(self.featScalesList)
        self.opPF=opPF
        
        #Caches the features
        opFeatureCache = OpBlockedArrayCache(self.g)
        opFeatureCache.inputs["innerBlockShape"].setValue((1,32,32,32,16))
        opFeatureCache.inputs["outerBlockShape"].setValue((1,128,128,128,64))
        opFeatureCache.inputs["Input"].connect(opPF.outputs["Output"])
        opFeatureCache.inputs["fixAtCurrent"].setValue(False)  
        self.opFeatureCache=opFeatureCache
        
        
        self.initLabels()
        self.dataReadyToView.emit()
        
    def initLabels(self):
        #Add the layer to draw the labels, but don't add any labels
        shape=self.inputProvider.outputs["Output"].shape
        
        self.opLabels = OpBlockedSparseLabelArray(self.g)                                
        self.opLabels.inputs["shape"].setValue(shape[:-1] + (1,))
        self.opLabels.inputs["blockShape"].setValue((1, 32, 32, 32, 1))
        self.opLabels.inputs["eraser"].setValue(100)                
        
        self.labelsrc = LazyflowSinkSource(self.opLabels, self.opLabels.outputs["Output"], self.opLabels.inputs["Input"])
        self.labelsrc.setObjectName("labels")
        
        transparent = QColor(0,0,0,0)
        self.labellayer = ColortableLayer(self.labelsrc, colorTable = [transparent.rgba()] )
        self.labellayer.name = "Labels"
        self.labellayer.ref_object = None
        self.layerstack.append(self.labellayer)    
    
    def initEditor(self):
        shape=self.inputProvider.outputs["Output"].shape
        
        self.editor = VolumeEditor(self.layerstack, labelsink=self.labelsrc)
        self.editor.dataShape = shape

        self.editor.newImageView2DFocus.connect(self.setIconToViewMenu)
        #drawing will be enabled when the first label is added  
        self.editor.setInteractionMode( 'navigation' )
        self.volumeEditorWidget.init(self.editor)
        model = self.editor.layerStack
        self.layerWidget.init(model)
        self.UpButton.clicked.connect(model.moveSelectedUp)
        model.canMoveSelectedUp.connect(self.UpButton.setEnabled)
        self.DownButton.clicked.connect(model.moveSelectedDown)
        model.canMoveSelectedDown.connect(self.DownButton.setEnabled)
        self.DeleteButton.clicked.connect(model.deleteSelected)
        model.canDeleteSelected.connect(self.DeleteButton.setEnabled)     
        
        self.opLabels.inputs["eraser"].setValue(self.editor.brushingModel.erasingNumber)      
    
    def _createDefault16ColorColorTable(self):
        c = []
        c.append(QColor(0, 0, 255))
        c.append(QColor(255, 255, 0))
        c.append(QColor(255, 0, 0))
        c.append(QColor(0, 255, 0))
        c.append(QColor(0, 255, 255))
        c.append(QColor(255, 0, 255))
        c.append(QColor(255, 105, 180)) #hot pink
        c.append(QColor(102, 205, 170)) #dark aquamarine
        c.append(QColor(165,  42,  42)) #brown        
        c.append(QColor(0, 0, 128))     #navy
        c.append(QColor(255, 165, 0))   #orange
        c.append(QColor(173, 255,  47)) #green-yellow
        c.append(QColor(128,0, 128))    #purple
        c.append(QColor(192, 192, 192)) #silver
        c.append(QColor(240, 230, 140)) #khaki
        c.append(QColor(69, 69, 69))    # dark grey
        return c
    
    
    def onFeatureButtonClicked(self):
        self.featureDlg.show()
        def onDlgAccepted():
            self.StartClassificationButton.setEnabled(True)
        self.featureDlg.accepted.connect(onDlgAccepted)
    
    def _onFeaturesChosen(self):
        selectedFeatures = self.featureDlg.featureTableWidget.createSelectedFeaturesBoolMatrix()
        print "new feature set:", selectedFeatures
        self.opPF.inputs['Matrix'].setValue(numpy.asarray(selectedFeatures))
    
    def _initFeatureDlg(self):
        dlg = self.featureDlg = FeatureDlg()
        
        dlg.setWindowTitle("Features")
        dlg.createFeatureTable({"Features": [FeatureEntry("Gaussian smoothing"), \
                                             FeatureEntry("Laplacian of Gaussian"), \
                                             FeatureEntry("Structure Tensor Eigenvalues"), \
                                             FeatureEntry("Hessian of Gaussian EV"),  \
                                             FeatureEntry("Gaussian Gradient Magnitude"), \
                                             FeatureEntry("Difference Of Gaussian")]}, \
                               self.featScalesList)
        dlg.setImageToPreView(None)
        m = [[1,0,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,0],[1,0,0,0,0,0,0],[1,0,0,0,0,0,0],[1,0,0,0,0,0,0]]
        dlg.featureTableWidget.setSelectedFeatureBoolMatrix(m)
        dlg.accepted.connect(self._onFeaturesChosen)
コード例 #6
0
ファイル: testSlotCallbacks.py プロジェクト: bheuer/lazyflow
class TestSlot_notifyConnect(object):

    def setUp(self):
        self.g = Graph()

    def tearDown(self):
        self.g.stopGraph()

    def test_connect(self):
        # test that the notifyConnect callback is called
        # when the slot is connected
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)
        opa.Input2.connect(ops.Output2)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        # check the connect callback is called
        opa.Input1._notifyConnect(callBack)
        opa.Input1.connect(ops.Output1)
        assert upval[0] == True


        # check the connect callback is called for a slot with default value
        upval[0] = False
        opa.Input3._notifyConnect(callBack)
        opa.Input3.connect(ops.Output3)
        assert upval[0] == True


        # check the connect callback is called for a multi inputslot
        upval[0] = False
        opa.Input4._notifyConnect(callBack)
        opa.Input4.connect(ops.Output4)
        assert upval[0] == True


    def test_no_connect(self):
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        opa.Input1._notifyConnect(callBack)

        # check the connect callback is not called when reconnecting to the same slot
        opa.Input1.connect(ops.Output1)
        upval[0] = False
        opa.Input1.connect(ops.Output1)
        assert upval[0] == False

        # check the connect callback is not called when setting the same value again
        opa.Input1.disconnect()
        opa.Input1.setValue(10)
        upval[0] = False
        opa.Input1.setValue(10)
        assert upval[0] == False

    def test_unregister_connect(self):
        # check that unregistering a connect callback works
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        opa.Input1._notifyConnect(callBack)
        opa.Input1._unregisterConnect(callBack)

        opa.Input1.connect(ops.Output1)
        assert upval[0] == False
コード例 #7
0
ファイル: testSlotCallbacks.py プロジェクト: bheuer/lazyflow
class TestSlot_notifyDisconnect(object):

    def setUp(self):
        self.g = Graph()

    def tearDown(self):
        self.g.stopGraph()

    def test_disconnect(self):
        # test that the notifyConnect callback is called
        # when the slot is connected
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        # check the disconnect callback is called upon disconnect
        opa.Input1.connect(ops.Output1)
        opa.Input1.notifyDisconnect(callBack)
        opa.Input1.disconnect()
        assert upval[0] == True

        # check the disconnect callback is called upon reconnect
        opa.Input1.connect(ops.Output1)
        upval[0] = False
        opa.Input1.connect(ops.Output2)
        assert upval[0] == True

        # check the disconnect callback is called upon setValue when being already connected
        opa.Input1.connect(ops.Output1)
        upval[0] = False
        opa.Input1.disconnect()
        opa.Input1.setValue(19)
        assert upval[0] == True

    def test_no_disconnect(self):
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        opa.Input1.notifyDisconnect(callBack)

        # check the disconnect callback is not called when reconnecting to the same slot
        opa.Input1.connect(ops.Output1)
        upval[0] = False
        opa.Input1.connect(ops.Output1)
        assert upval[0] == False

        # check the disconnect callback is not called when setting the same value again
        opa.Input1.disconnect()
        opa.Input1.setValue(10)
        upval[0] = False
        opa.Input1.setValue(10)
        assert upval[0] == False

    def test_unregister_disconnect(self):
        # check that unregistering a disconnect callback works
        ops = OpS(graph=self.g)
        opa = OpA(graph=self.g)

        upval = [False]

        def callBack(slot):
            upval[0] = True

        opa.Input1.connect(ops.Output1)

        opa.Input1.notifyDisconnect(callBack)
        opa.Input1.unregisterDisconnect(callBack)

        opa.Input1.disconnect()

        assert upval[0] == False