コード例 #1
0
class OpArrayPiperWithAccessCount(Operator):
    """
    array piper that counts how many times its execute function has been called
    """

    Input = InputSlot(allow_mask=True)
    Output = OutputSlot(allow_mask=True)

    def __init__(self, *args, **kwargs):
        super(OpArrayPiperWithAccessCount, self).__init__(*args, **kwargs)
        self.clear()
        self._lock = threading.Lock()

    def setupOutputs(self):
        self.Output.meta.assignFrom(self.Input.meta)

    def execute(self, slot, subindex, roi, result):
        with self._lock:
            self.accessCount += 1
            self.requests.append(roi)
        req = self.Input.get(roi)
        req.writeInto(result)
        req.block()

    def propagateDirty(self, slot, subindex, roi):
        self.Output.setDirty(roi)

    def clear(self):
        self.requests = []
        self.accessCount = 0
コード例 #2
0
class OpCallWhenDirty(Operator):
    """
    calls the attribute 'function' when Input gets dirty

    The parameters of the dirty call are stored in attributres.
    """

    Input = InputSlot(allow_mask=True)
    Output = OutputSlot(allow_mask=True)

    function = lambda: None
    slot = None
    roi = None

    def setupOutputs(self):
        self.Output.meta.assignFrom(self.Input.meta)

    def execute(self, slot, subindex, roi, result):
        req = self.Input.get(roi)
        req.writeInto(result)
        req.block()

    def propagateDirty(self, slot, subindex, roi):
        try:
            self.slot = slot
            self.subindex = subindex
            self.roi = roi
            self.function()
        except:
            raise
        finally:
            self.Output.setDirty(roi)
コード例 #3
0
class DirtyAssert(Operator):
    Input = InputSlot()

    class WasSetDirty(Exception):
        pass

    def propagateDirty(self, slot, subindex, roi):
        raise DirtyAssert.WasSetDirty()
コード例 #4
0
class OpArrayPiper2(Operator):
    name = "ArrayPiper"
    description = "simple piping operator"

    #Inputs
    Input = InputSlot()

    #Outputs
    Output = OutputSlot()

    def setupOutputs(self):
        inputSlot = self.inputs["Input"]
        self.outputs["Output"].meta.assignFrom(inputSlot.meta)

        self.Output.meta.axistags = vigra.AxisTags([
            vigra.AxisInfo("t"),
            vigra.AxisInfo("x"),
            vigra.AxisInfo("y"),
            vigra.AxisInfo("z"),
            vigra.AxisInfo("c")
        ])

    def execute(self, slot, subindex, roi, result):
        key = roi.toSlice()
        req = self.inputs["Input"][key].writeInto(result)
        req.wait()
        return result

    def propagateDirty(self, slot, subindex, roi):
        key = roi.toSlice()
        # Check for proper name because subclasses may define extra inputs.
        # (but decline to override notifyDirty)
        if slot.name == 'Input':
            self.outputs["Output"].setDirty(key)
        else:
            # If some input we don't know about is dirty (i.e. we are subclassed by an operator with extra inputs),
            # then mark the entire output dirty.  This is the correct behavior for e.g. 'sigma' inputs.
            self.outputs["Output"].setDirty(slice(None))

    def setInSlot(self, slot, subindex, roi, value):
        # Forward to output
        assert subindex == ()
        assert slot == self.Input
        key = roi.toSlice()
        self.outputs["Output"][key] = value
コード例 #5
0
class OpLazyConnectedComponents(Operator):
    name = "OpLazyConnectedComponents"
    supportedDtypes = [np.uint8, np.uint32, np.float32]

    # input data (usually segmented)
    Input = InputSlot()

    # the spatial shape of one chunk, in 'xyz' order
    # (even if the input does lack some axis, you *have* to provide a
    # 3-tuple here)
    ChunkShape = InputSlot(optional=True)

    # background with axes 'txyzc', spatial axes must be singletons
    # (this layout is needed to be compatible with OpLabelVolume)
    Background = InputSlot(optional=True)

    # the labeled output, internally cached (the two slots are the same)
    Output = OutputSlot()
    CachedOutput = OutputSlot()

    # cache access slots, see OpCompressedCache

    # fill the cache from an HDF5 group
    InputHdf5 = InputSlot(optional=True)

    # returns an object array of length 1 that contains a list of 2-tuples
    # first item is block start, second item is block stop (exclusive)
    CleanBlocks = OutputSlot()

    # fills an HDF5 group with data from cache, requests must be for exactly
    # one block
    OutputHdf5 = OutputSlot()

    ### INTERNALS -- DO NOT USE ###
    _Input = OutputSlot()
    _Output = OutputSlot()

    def __init__(self, *args, **kwargs):
        super(OpLazyConnectedComponents, self).__init__(*args, **kwargs)
        self._lock = HardLock()

        # reordering operators - we want to handle txyzc inside this operator
        self._opIn = OpReorderAxes(parent=self)
        self._opIn.AxisOrder.setValue('txyzc')
        self._opIn.Input.connect(self.Input)
        self._Input.connect(self._opIn.Output)

        self._opOut = OpReorderAxes(parent=self)
        self._opOut.Input.connect(self._Output)
        self.Output.connect(self._opOut.Output)
        self.CachedOutput.connect(self.Output)

    def setupOutputs(self):
        self.Output.meta.assignFrom(self.Input.meta)
        self.Output.meta.dtype = _LABEL_TYPE
        self._Output.meta.assignFrom(self._Input.meta)
        self._Output.meta.dtype = _LABEL_TYPE
        if not self.Input.meta.dtype in self.supportedDtypes:
            raise ValueError("Cannot label data type {}".format(
                self.Input.meta.dtype))

        self.OutputHdf5.meta.assignFrom(self.Input.meta)
        self.CleanBlocks.meta.shape = (1, )
        self.CleanBlocks.meta.dtype = np.object

        self._setDefaultInternals()

        # go back to original order
        self._opOut.AxisOrder.setValue(self.Input.meta.getAxisKeys())

    def execute(self, slot, subindex, roi, result):
        if slot is self._Output:
            logger.debug("Execute for {}".format(roi))
            self._manager.hello()
            othersToWaitFor = set()
            chunks = self._roiToChunkIndex(roi)
            for chunk in chunks:
                othersToWaitFor |= self.growRegion(chunk)

            self._manager.waitFor(othersToWaitFor)
            self._manager.goodbye()
            self._mapArray(roi, result)
            self._report()
        elif slot == self.OutputHdf5:
            self._executeOutputHdf5(roi, result)
        elif slot == self.CleanBlocks:
            self._executeCleanBlocks(result)
        else:
            raise ValueError("Request to invalid slot {}".format(str(slot)))

    def propagateDirty(self, slot, subindex, roi):
        # Dirty handling is not trivial with this operator. The worst
        # case happens when an object disappears entirely, meaning that
        # the assigned labels would not be contiguous anymore. We could
        # check for that here, and set everything dirty if it's the
        # case, but this would require us to run the entire algorithm
        # once again, which is not desireable in propagateDirty(). The
        # simplest valid decision is to set the whole output dirty in
        # every case.
        self._setDefaultInternals()
        self.Output.setDirty(slice(None))

    def setInSlot(self, slot, subindex, key, value):
        if slot == self.InputHdf5:
            self._setInSlotInputHdf5(slot, subindex, key, value)
        else:
            raise ValueError(
                "setInSlot() not supported for slot {}".format(slot))

    # grow the requested region such that all labels inside that region are
    # final
    # @param chunkIndex the index of the chunk to finalize
    def growRegion(self, chunkIndex):
        ticket = self._manager.register()
        othersToWaitFor = set()

        # label this chunk
        self._label(chunkIndex)

        # we want to finalize every label in our first chunk
        localLabels = np.arange(1, self._numIndices[chunkIndex] + 1)
        localLabels = localLabels.astype(_LABEL_TYPE)
        chunksToProcess = [(chunkIndex, localLabels)]

        while chunksToProcess:
            # Breadth-First-Search, using list as FIFO
            currentChunk, localLabels = chunksToProcess.pop(0)

            # get the labels in use by this chunk
            # (no need to label this chunk, has been done already because it
            # was labeled as a neighbour of the last chunk, and the first chunk
            # was labeled above)
            localLabels = np.arange(1, self._numIndices[currentChunk] + 1)
            localLabels = localLabels.astype(_LABEL_TYPE)

            # tell the label manager that we are about to finalize some labels
            actualLabels, others = self._manager.checkoutLabels(
                currentChunk, localLabels, ticket)
            othersToWaitFor |= others

            # now we have got a list of local labels for this chunk, which no
            # other process is going to finalize

            # start merging adjacent regions
            otherChunks = self._generateNeighbours(currentChunk)
            for other in otherChunks:
                self._label(other)
                a, b = self._orderPair(currentChunk, other)
                me = 0 if a == currentChunk else 1
                res = self._merge(a, b)
                myLabels, otherLabels = res[me], res[1 - me]

                # determine which objects from this chunk continue in the
                # neighbouring chunk
                extendingLabels = [
                    b for a, b in zip(myLabels, otherLabels)
                    if a in actualLabels
                ]
                extendingLabels = np.unique(extendingLabels).astype(
                    _LABEL_TYPE)

                # add the neighbour to our processing queue only if it actually
                # shares objects
                if extendingLabels.size > 0:
                    # check if already in queue
                    found = False
                    for i in xrange(len(chunksToProcess)):
                        if chunksToProcess[i][0] == other:
                            extendingLabels = np.union1d(
                                chunksToProcess[i][1], extendingLabels)
                            chunksToProcess[i] = (other, extendingLabels)
                            found = True
                            break
                    if not found:
                        chunksToProcess.append((other, extendingLabels))

        self._manager.unregister(ticket)
        return othersToWaitFor

    # label a chunk and store information
    @_chunksynchronized
    def _label(self, chunkIndex):
        if self._numIndices[chunkIndex] >= 0:
            # this chunk is already labeled
            return

        logger.debug("labeling chunk {} ({})".format(
            chunkIndex, self._chunkIndexToRoi(chunkIndex)))
        # get the raw data
        roi = self._chunkIndexToRoi(chunkIndex)
        inputChunk = self._Input.get(roi).wait()
        inputChunk = vigra.taggedView(inputChunk, axistags='txyzc')
        inputChunk = inputChunk.withAxes(*'xyz')

        # label the raw data
        assert self._background_valid,\
            "Background values are configured incorrectly"
        bg = self._background[chunkIndex[0], chunkIndex[4]]
        # a vigra bug forces us to convert to int here
        bg = int(bg)
        # TODO use labelMultiArray once available
        labeled = vigra.analysis.labelVolumeWithBackground(inputChunk,
                                                           background_value=bg)
        labeled = vigra.taggedView(labeled, axistags='xyz').withAxes(*'txyzc')
        del inputChunk
        # TODO this could be more efficiently combined with merging

        # store the labeled data in cache
        self._cache[roi.toSlice()] = labeled

        # update the labeling information
        numLabels = labeled.max()  # we ignore 0 here
        self._numIndices[chunkIndex] = numLabels
        if numLabels > 0:
            with self._lock:
                # determine the offset
                # localLabel + offset = globalLabel (for localLabel>0)
                offset = self._uf.makeNewIndex()
                self._globalLabelOffset[chunkIndex] = offset - 1

                # get n-1 more labels
                for i in range(numLabels - 1):
                    self._uf.makeNewIndex()

    # merge the labels of two adjacent chunks
    # the chunks have to be ordered lexicographically, e.g. by self._orderPair
    @_chunksynchronized
    def _merge(self, chunkA, chunkB):
        if chunkB in self._mergeMap[chunkA]:
            return (np.zeros((0, ), dtype=_LABEL_TYPE), ) * 2
        assert not self._isFinal[chunkA]
        assert not self._isFinal[chunkB]
        self._mergeMap[chunkA].append(chunkB)

        hyperplane_roi_a, hyperplane_roi_b = \
            self._chunkIndexToHyperplane(chunkA, chunkB)
        hyperplane_index_a = hyperplane_roi_a.toSlice()
        hyperplane_index_b = hyperplane_roi_b.toSlice()

        label_hyperplane_a = self._cache[hyperplane_index_a]
        label_hyperplane_b = self._cache[hyperplane_index_b]

        # see if we have border labels at all
        adjacent_bool_inds = np.logical_and(label_hyperplane_a > 0,
                                            label_hyperplane_b > 0)
        if not np.any(adjacent_bool_inds):
            return (np.zeros((0, ), dtype=_LABEL_TYPE), ) * 2

        # check if the labels do actually belong to the same component
        hyperplane_a = self._Input[hyperplane_index_a].wait()
        hyperplane_b = self._Input[hyperplane_index_b].wait()
        adjacent_bool_inds = np.logical_and(adjacent_bool_inds,
                                            hyperplane_a == hyperplane_b)

        # union find manipulations are critical
        with self._lock:
            map_a = self.localToGlobal(chunkA)
            map_b = self.localToGlobal(chunkB)
            labels_a = map_a[label_hyperplane_a[adjacent_bool_inds]]
            labels_b = map_b[label_hyperplane_b[adjacent_bool_inds]]
            for a, b in zip(labels_a, labels_b):
                assert a not in self._globalToFinal, "Invalid merge"
                assert b not in self._globalToFinal, "Invalid merge"
                self._uf.makeUnion(a, b)

            logger.debug("merged chunks {} and {}".format(chunkA, chunkB))
        correspondingLabelsA = label_hyperplane_a[adjacent_bool_inds]
        correspondingLabelsB = label_hyperplane_b[adjacent_bool_inds]
        return correspondingLabelsA, correspondingLabelsB

    # get a rectangular region with final global labels
    # @param roi region of interest
    # @param result array of shape roi.stop - roi.start, will be filled
    def _mapArray(self, roi, result):
        assert np.all(roi.stop - roi.start == result.shape)

        logger.debug("mapping roi {}".format(roi))
        indices = self._roiToChunkIndex(roi)
        for idx in indices:
            newroi = self._chunkIndexToRoi(idx)
            newroi.stop = np.minimum(newroi.stop, roi.stop)
            newroi.start = np.maximum(newroi.start, roi.start)
            self._mapChunk(idx)
            chunk = self._cache[newroi.toSlice()]
            newroi.start -= roi.start
            newroi.stop -= roi.start
            s = newroi.toSlice()
            result[s] = chunk

    # Store a chunk with final labels in cache
    @_chunksynchronized
    def _mapChunk(self, chunkIndex):
        if self._isFinal[chunkIndex]:
            return

        newroi = self._chunkIndexToRoi(chunkIndex)
        s = newroi.toSlice()
        chunk = self._cache[s]
        labels = self.localToGlobal(chunkIndex)
        labels = self.globalToFinal(chunkIndex[0], chunkIndex[4], labels)
        self._cache[s] = labels[chunk]

        self._isFinal[chunkIndex] = True

    # returns an array of global labels in use by this chunk. This array can be
    # used as a mapping via
    #   mapping = localToGlobal(...)
    #   mapped = mapping[locallyLabeledArray]
    # The global labels are updated to their current state according to the
    # global UnionFind structure.
    def localToGlobal(self, chunkIndex):
        offset = self._globalLabelOffset[chunkIndex]
        numLabels = self._numIndices[chunkIndex]
        labels = np.arange(1, numLabels + 1, dtype=_LABEL_TYPE) + offset

        labels = np.asarray(map(self._uf.findIndex, labels), dtype=_LABEL_TYPE)

        # we got 'numLabels' real labels, and one label '0', so our
        # output has to have numLabels+1 elements
        out = np.zeros((numLabels + 1, ), dtype=_LABEL_TYPE)
        out[1:] = labels
        return out

    # map an array of global indices to final labels
    # after calling this function, the labels passed in may not be used with
    # UnionFind.makeUnion any more!
    @threadsafe
    def globalToFinal(self, t, c, labels):
        newlabels = labels.copy()
        d = self._globalToFinal[(t, c)]
        labeler = self._labelIterators[(t, c)]
        for k in np.unique(labels):
            l = self._uf.findIndex(k)
            if l == 0:
                continue

            if l not in d:
                nextLabel = labeler.next()
                d[l] = nextLabel
            newlabels[labels == k] = d[l]
        return newlabels

    ##########################################################################
    ##################### HELPER METHODS #####################################
    ##########################################################################

    # create roi object from chunk index
    def _chunkIndexToRoi(self, index):
        shape = self._shape
        start = self._chunkShape * np.asarray(index)
        stop = self._chunkShape * (np.asarray(index) + 1)
        stop = np.where(stop > shape, shape, stop)
        roi = SubRegion(self.Input, start=tuple(start), stop=tuple(stop))
        return roi

    # create a list of chunk indices needed for a particular roi
    def _roiToChunkIndex(self, roi):
        cs = self._chunkShape
        start = np.asarray(roi.start)
        stop = np.asarray(roi.stop)
        start_cs = start / cs
        stop_cs = stop / cs
        # add one if division was not even
        stop_cs += np.where(stop % cs, 1, 0)
        iters = [xrange(start_cs[i], stop_cs[i]) for i in range(5)]
        chunks = list(itertools.product(*iters))
        return chunks

    # compute the adjacent hyperplanes of two chunks (1 pix wide)
    # @return 2-tuple of roi's for the respective chunk
    def _chunkIndexToHyperplane(self, chunkA, chunkB):
        rev = False
        assert chunkA[0] == chunkB[0] and chunkA[4] == chunkB[4],\
            "these chunks are not spatially adjacent"

        # just iterate over spatial axes
        for i in range(1, 4):
            if chunkA[i] > chunkB[i]:
                rev = True
                chunkA, chunkB = chunkB, chunkA
            if chunkA[i] < chunkB[i]:
                roiA = self._chunkIndexToRoi(chunkA)
                roiB = self._chunkIndexToRoi(chunkB)
                start = np.asarray(roiA.start)
                start[i] = roiA.stop[i] - 1
                roiA.start = tuple(start)
                stop = np.asarray(roiB.stop)
                stop[i] = roiB.start[i] + 1
                roiB.stop = tuple(stop)
        if rev:
            return roiB, roiA
        else:
            return roiA, roiB

    # generate a list of adjacent chunks
    def _generateNeighbours(self, chunkIndex):
        n = []
        idx = np.asarray(chunkIndex, dtype=np.int)
        # only spatial neighbours are considered
        for i in range(1, 4):
            if idx[i] > 0:
                new = idx.copy()
                new[i] -= 1
                n.append(tuple(new))
            if idx[i] + 1 < self._chunkArrayShape[i]:
                new = idx.copy()
                new[i] += 1
                n.append(tuple(new))
        return n

    # fills attributes with standard values, call on each setupOutputs
    def _setDefaultInternals(self):
        # chunk array shape calculation
        shape = self._Input.meta.shape
        if self.ChunkShape.ready():
            chunkShape = (1, ) + self.ChunkShape.value + (1, )
        elif self._Input.meta.ideal_blockshape is not None and\
                np.prod(self._Input.meta.ideal_blockshape) > 0:
            chunkShape = self._Input.meta.ideal_blockshape
        else:
            chunkShape = self._automaticChunkShape(self._Input.meta.shape)
        assert len(shape) == len(chunkShape),\
            "Encountered an invalid chunkShape"
        chunkShape = np.minimum(shape, chunkShape)
        f = lambda i: shape[i] // chunkShape[i] + (1 if shape[i] % chunkShape[
            i] else 0)
        self._chunkArrayShape = tuple(map(f, range(len(shape))))
        self._chunkShape = np.asarray(chunkShape, dtype=np.int)
        self._shape = shape

        # determine the background values
        self._background = np.zeros((shape[0], shape[4]),
                                    dtype=self.Input.meta.dtype)
        if self.Background.ready():
            bg = self.Background[...].wait()
            bg = vigra.taggedView(bg, axistags="txyzc").withAxes('t', 'c')
            # we might have an old value set for the background value
            # ignore it until it is configured correctly, or execute is called
            if bg.size > 1 and \
                    (shape[0] != bg.shape[0] or shape[4] != bg.shape[1]):
                self._background_valid = False
            else:
                self._background_valid = True
                self._background[:] = bg
        else:
            self._background_valid = True

        # manager object
        self._manager = _LabelManager()

        ### local labels ###
        # cache for local labels
        # adjust cache chunk shape to our chunk shape
        cs = tuple(map(_get_next_power, self._chunkShape))
        logger.debug("Creating cache with chunk shape {}".format(cs))
        self._cache = vigra.ChunkedArrayCompressed(shape,
                                                   dtype=_LABEL_TYPE,
                                                   chunk_shape=cs)

        ### global indices ###
        # offset (global labels - local labels) per chunk
        self._globalLabelOffset = np.ones(self._chunkArrayShape,
                                          dtype=_LABEL_TYPE)
        # keep track of number of indices in chunk (-1 == not labeled yet)
        self._numIndices = -np.ones(self._chunkArrayShape, dtype=np.int32)

        # union find data structure, tells us for every global index to which
        # label it belongs
        self._uf = UnionFindArray(_LABEL_TYPE(1))

        ### global labels ###
        # keep track of assigned global labels
        gen = partial(InfiniteLabelIterator, 1, dtype=_LABEL_TYPE)
        self._labelIterators = defaultdict(gen)
        self._globalToFinal = defaultdict(dict)
        self._isFinal = np.zeros(self._chunkArrayShape, dtype=np.bool)

        ### algorithmic ###

        # keep track of merged regions
        self._mergeMap = defaultdict(list)

        # locks that keep threads from changing a specific chunk
        self._chunk_locks = defaultdict(HardLock)

    def _executeCleanBlocks(self, destination):
        assert destination.shape == (1, )
        finalIndices = np.where(self._isFinal)

        def ind2tup(ind):
            roi = self._chunkIndexToRoi(ind)
            return (roi.start, roi.stop)

        destination[0] = list(map(ind2tup, zip(*finalIndices)))

    def _executeOutputHdf5(self, roi, destination):
        logger.debug("Servicing request for hdf5 block {}".format(roi))

        assert isinstance(destination, h5py.Group),\
            "OutputHdf5 slot requires an hdf5 GROUP to copy into "\
            "(not a numpy array)."
        index = self._roiToChunkIndex(roi)[0]
        block_roi = self._chunkIndexToRoi(index)
        valid = np.all(roi.start == block_roi.start)
        valid = valid and np.all(roi.stop == block_roi.stop)
        assert valid, "OutputHdf5 slot requires roi to be exactly one block."

        name = str([block_roi.start, block_roi.stop])
        assert name not in destination,\
            "destination hdf5 group already has a dataset "\
            "with this block's name"
        destination.create_dataset(name,
                                   shape=self._chunkShape,
                                   dtype=_LABEL_TYPE,
                                   data=self._cache[block_roi.toSlice()])

    def _setInSlotInputHdf5(self, slot, subindex, roi, value):
        logger.debug("Setting block {} from hdf5".format(roi))
        assert isinstance(value, h5py.Dataset),\
            "InputHdf5 slot requires an hdf5 Dataset to copy from "\
            "(not a numpy array)."

        indices = self._roiToChunkIndex(roi)
        for idx in indices:
            cacheroi = self._chunkIndexToRoi(idx)
            cacheroi.stop = np.minimum(cacheroi.stop, roi.stop)
            cacheroi.start = np.maximum(cacheroi.start, roi.start)
            dsroi = cacheroi.copy()
            dsroi.start -= roi.start
            dsroi.stop -= roi.start
            self._cache[cacheroi.toSlice()] = value[dsroi.toSlice()]
            self._isFinal[idx] = True

    # print a summary of blocks in use and their storage volume
    def _report(self):
        m = {np.uint8: 1, np.uint16: 2, np.uint32: 4, np.uint64: 8}
        nStoredChunks = self._isFinal.sum()
        nChunks = self._isFinal.size
        cachedMB = self._cache.data_bytes / 1024.0**2
        rawMB = self._cache.size * m[_LABEL_TYPE]
        logger.debug("Currently stored chunks: {}/{} ({:.1f} MB)".format(
            nStoredChunks, nChunks, cachedMB))

    # order a pair of chunk indices lexicographically
    # (ret[0] is top-left-in-front-of of ret[1])
    @staticmethod
    def _orderPair(tupA, tupB):
        for a, b in zip(tupA, tupB):
            if a < b:
                return tupA, tupB
            if a > b:
                return tupB, tupA
        raise ValueError("tupA={} and tupB={} are the same".format(tupA, tupB))
        return tupA, tupB

    # choose chunk shape appropriate for a particular dataset
    # TODO: this is by no means an optimal decision -> extend
    @staticmethod
    def _automaticChunkShape(shape):
        # use about 16 million pixels per chunk
        default = (1, 256, 256, 256, 1)
        if np.prod(shape) < 2 * np.prod(default):
            return (1, ) + shape[1:4] + (1, )
        else:
            return default