コード例 #1
0
ファイル: lcfcn.py プロジェクト: ElementAI/LCFCN
    def vis_on_batch(self, batch, savedir_image):
        self.eval()
        images = batch["images"].to(self.device)
        points = batch["points"].long().to(self.device)
        logits = self.model_base.forward(images)
        probs = logits.sigmoid().cpu().numpy()

        blobs = lcfcn_loss.get_blobs(probs=probs)

        pred_counts = (np.unique(blobs)!=0).sum()
        pred_blobs = blobs
        pred_probs = probs.squeeze()

        # loc 
        pred_count = pred_counts.ravel()[0]
        pred_blobs = pred_blobs.squeeze()
        pred_points = lcfcn_loss.blobs2points(pred_blobs).squeeze()
        img_org = hu.get_image(batch["images"],denorm="rgb")

        i1 = convert(np.array(img_org), batch['points'][0], enlarge=20)
        i2 = convert(np.array(img_org), pred_blobs, enlarge=0)
        i3 = convert(np.array(img_org), pred_points, enlarge=20)
        
        
        hu.save_image(savedir_image, np.hstack([i1, i2, i3]))
コード例 #2
0
ファイル: lcfcn.py プロジェクト: ElementAI/LCFCN
    def val_on_batch(self, batch):
        self.eval()
        images = batch["images"].to(self.device)
        points = batch["points"].long().to(self.device)
        logits = self.model_base.forward(images)
        probs = logits.sigmoid().cpu().numpy()

        blobs = lcfcn_loss.get_blobs(probs=probs)
        pred_points = lcfcn_loss.blobs2points(blobs).squeeze()

        mae = abs(float((np.unique(blobs)!=0).sum() - (points!=0).sum()))
        game = lcfcn_loss.compute_game(pred_points=pred_points.squeeze(), gt_points=points.squeeze().cpu().numpy(), L=3)
        return {'mae':mae, 'game':game }
コード例 #3
0
    def vis_on_batch(self, batch, savedir_image):
        self.eval()
        images = batch["images"].to('cpu')  #helen changed this from .cuda()
        #print(images)
        #print(images.shape)
        points = batch["points"].long().to(
            'cpu')  #helen changed this from .cuda()
        logits = self.model.forward(images)
        probs = logits.sigmoid().cpu().numpy()

        blobs = lcfcn_loss.get_blobs(probs=probs)

        pred_counts = (np.unique(blobs) != 0).sum()
        pred_blobs = blobs
        pred_probs = probs.squeeze()

        # loc
        pred_count = pred_counts.ravel()[0]
        pred_blobs = pred_blobs.squeeze()

        img_org = hu.get_image(batch["images"], denorm="rgb")

        # true points
        y_list, x_list = np.where(batch["points"][0].long().numpy().squeeze())
        img_peaks = hi.points_on_image(y_list, x_list, img_org, radius=11)
        text = "%s ground truth" % (batch["points"].sum().item())
        hi.text_on_image(text=text, image=img_peaks)

        # pred points
        pred_points = lcfcn_loss.blobs2points(pred_blobs).squeeze()
        y_list, x_list = np.where(pred_points.squeeze())
        img_pred = hi.mask_on_image(img_org, pred_blobs)
        #img_pred = hi.points_on_image(y_list, x_list, img_org)
        text = "%s predicted" % (len(y_list))
        hi.text_on_image(text=text, image=img_pred)

        # ***************            helen added this code
        plt.imshow(
            img_pred
        )  #these lines of code display the image with the model's predications on it
        plt.show()
        # ***************            end of helen's code

        # heatmap
        heatmap = hi.gray2cmap(pred_probs)
        heatmap = hu.f2l(heatmap)
        hi.text_on_image(text="lcfcn heatmap", image=heatmap)

        img_mask = np.hstack([img_peaks, img_pred, heatmap])

        hu.save_image(savedir_image, img_mask)
コード例 #4
0
    def vis_on_batch_helen(self, batch, savedir_image):
        self.eval()
        images = batch.to('cpu')
        #print(images)          #print statement to check what images is for debugging
        #print(images.shape)    #print statement to check images has the correct shape
        logits = self.model.forward(images)
        probs = logits.sigmoid().cpu().numpy()

        blobs = lcfcn_loss.get_blobs(probs=probs)

        pred_counts = (np.unique(blobs) != 0).sum()
        pred_blobs = blobs
        pred_probs = probs.squeeze()

        # loc
        pred_count = pred_counts.ravel()[0]
        pred_blobs = pred_blobs.squeeze()

        img_org = hu.get_image(images, denorm="rgb")
        #this is what was originally written: img_org = hu.get_image(batch["images"],denorm="rgb")

        #the following lines are commented out because my own data does not have labels and will thus throw errors
        # true points
        #y_list, x_list = np.where(batch["points"][0].long().numpy().squeeze())
        #img_peaks = hi.points_on_image(y_list, x_list, img_org, radius=11)
        #text = "%s ground truth" % (batch["points"].sum().item())
        #hi.text_on_image(text=text, image=img_peaks)

        # pred points
        pred_points = lcfcn_loss.blobs2points(pred_blobs).squeeze()
        y_list, x_list = np.where(pred_points.squeeze())
        img_pred = hi.mask_on_image(img_org, pred_blobs)
        # img_pred = hi.points_on_image(y_list, x_list, img_org)
        text = "%s predicted" % (len(y_list))
        hi.text_on_image(text=text, image=img_pred)

        # these lines of code display the image with the model's predications on it
        plt.imshow(img_pred)
        plt.show()

        # heatmap
        heatmap = hi.gray2cmap(pred_probs)
        heatmap = hu.f2l(heatmap)
        hi.text_on_image(text="lcfcn heatmap", image=heatmap)

        img_mask = np.hstack([img_pred, heatmap])  #helen took out im_peaks
        #this is what was originally written: img_mask = np.hstack([img_peaks, img_pred, heatmap])

        hu.save_image(savedir_image, img_mask)
コード例 #5
0
ファイル: models.py プロジェクト: haven-ai/counting-benchmark
    def vis_on_batch(self, batch, savedir_image):
        self.eval()
        images = batch["images"].cuda()
        points = batch["points"].long().cuda()
        logits = self.model_base.forward(images)
        probs = logits.sigmoid().cpu().numpy()

        blobs = lcfcn_loss.get_blobs(probs=probs)

        pred_counts = (np.unique(blobs)!=0).sum()
        pred_blobs = blobs
        pred_probs = probs.squeeze()

        # loc 
        pred_count = pred_counts.ravel()[0]
        pred_blobs = pred_blobs.squeeze()
        
        img_org = hu.get_image(batch["images"],denorm="rgb")

        # true points
        y_list, x_list = np.where(batch["points"][0].long().numpy().squeeze())
        img_peaks = haven_img.points_on_image(y_list, x_list, img_org)
        text = "%s ground truth" % (batch["points"].sum().item())
        haven_img.text_on_image(text=text, image=img_peaks)

        # pred points 
        pred_points = lcfcn_loss.blobs2points(pred_blobs).squeeze()
        y_list, x_list = np.where(pred_points.squeeze())
        img_pred = hi.mask_on_image(img_org, pred_blobs)
        # img_pred = haven_img.points_on_image(y_list, x_list, img_org)
        text = "%s predicted" % (len(y_list))
        haven_img.text_on_image(text=text, image=img_pred)

        # heatmap 
        heatmap = hi.gray2cmap(pred_probs)
        heatmap = hu.f2l(heatmap)
        haven_img.text_on_image(text="lcfcn heatmap", image=heatmap)
        
        
        img_mask = np.hstack([img_peaks, img_pred, heatmap])
        
        hu.save_image(savedir_image, img_mask)