コード例 #1
0
    def test_get_best_anticipation(self, _p0, _result):
        # given
        p0 = Perception(_p0)
        effect = Effect(['#', '#', '0', '#', '#', '0', '#', '#'])

        # when
        result0 = effect.get_best_anticipation(p0)

        # then
        assert result0 == _result
コード例 #2
0
    def test_does_match(self, _p0, _p1, _e, _result):
        # given
        p0 = Perception(_p0)
        p1 = Perception(_p1)
        effect = Effect(_e)

        # when
        result = effect.does_match(p0, p1)

        # then
        assert result is _result
コード例 #3
0
    def test_does_specify_only_changes_backwards(self, _p0, _p1, _e, _result):
        # given
        back_ant = Perception(_p0)
        sit = Perception(_p1)
        effect = Effect(_e)

        # when
        result = effect.does_specify_only_changes_backwards(back_ant, sit)

        # then
        assert result is _result
コード例 #4
0
ファイル: test_Effect.py プロジェクト: edebie/pyalcs
    def test_should_check_if_specializable_6(self):
        # given
        p0 = Perception(['0', '0', '1', '1', '0', '0', '0', '0'])
        p1 = Perception(['0', '0', '1', '1', '0', '0', '0', '0'])
        effect = Effect(['#', '1', '0', '#', '#', '#', '1', '1'])

        # when
        res = effect.is_specializable(p0, p1)

        # then
        assert res is False
コード例 #5
0
    def test_should_specialize(self, _p0, _p1, _init_cond, _init_effect,
                               _res_cond, _res_effect, cfg):
        # given
        cls = Classifier(condition=Condition(_init_cond),
                         effect=Effect(_init_effect),
                         cfg=cfg)
        p0 = Perception(_p0)
        p1 = Perception(_p1)

        # when
        cls.specialize(p0, p1, leave_specialized=False)

        # then
        assert cls.condition == Condition(_res_cond)
        assert cls.effect == Effect(_res_effect)
コード例 #6
0
    def test_should_handle_expected_case_3(self, cfg):
        # given
        p0 = Perception('00110000')
        time = 26
        cls = Classifier(action=5, quality=0.46, cfg=cfg)
        cls.mark[0].add('0')
        cls.mark[1].add('1')
        cls.mark[2].add('0')
        cls.mark[3].add('1')
        cls.mark[4].add('0')
        cls.mark[5].add('1')
        cls.mark[6].add('1')
        cls.mark[7].add('1')

        # when
        new_cls = expected_case(cls, p0, time)

        # then
        assert new_cls is not None
        # One `random` attribute gets specified
        assert 1 == new_cls.condition.specificity
        assert Effect('########') == new_cls.effect
        assert 5 == new_cls.action
        assert new_cls.is_marked() is False
        assert 0.5 == new_cls.q
コード例 #7
0
    def test_should_handle_expected_case_4(self, cfg):
        # given
        p0 = Perception('11101101')
        time = 703
        cls = Classifier(condition='1##01#0#',
                         action=7,
                         effect='0##10#1#',
                         quality=0.47,
                         cfg=cfg)
        cls.mark[1].update(['0', '2'])
        cls.mark[2].update(['1'])
        cls.mark[5].update(['0', '1'])
        cls.mark[7].update(['1'])

        # when
        new_cls = expected_case(cls, p0, time)

        # then
        assert new_cls is not None
        # One `random` attribute gets specified
        assert new_cls.condition.specificity in [4, 5]
        assert Effect('0##10#1#') == new_cls.effect
        assert 7 == new_cls.action
        assert new_cls.is_marked() is False
        assert 0.5 == new_cls.q
コード例 #8
0
    def test_should_handle_unexpected_case_2(self, cfg):
        # given
        cls = Classifier(condition='#######0', action=4, quality=0.4, cfg=cfg)
        cls.mark[0].update([0, 1])
        cls.mark[1].update([0, 1])
        cls.mark[2].update([0, 1])
        cls.mark[3].update([0, 1])
        cls.mark[4].update([1])
        cls.mark[5].update([0, 1])
        cls.mark[6].update([0, 1])

        p0 = Perception('11101010')
        p1 = Perception('10011101')
        time = 94

        # when
        new_cl = unexpected_case(cls, p0, p1, time)

        # then
        assert new_cl.condition == Condition('#110#010')
        assert new_cl.effect == Effect('#001#101')
        assert new_cl.is_marked() is False
        assert time == new_cl.tga
        assert time == new_cl.talp
        assert abs(cls.q - 0.38) < 0.01
コード例 #9
0
    def test_copy_from_and_change_does_not_influence_another_effect(self, cfg):
        """ Verify that not just reference to Condition copied (changing which
        will change the original - definitily not original C++ code did). """
        # given
        operation_time = 123
        original_cl = Classifier(effect='10####1#', cfg=cfg)

        # when
        copied_cl = Classifier.copy_from(original_cl, operation_time)

        # when & then
        copied_cl.effect[2] = '1'
        assert Effect('101###1#') == copied_cl.effect
        assert Effect('10####1#') == original_cl.effect

        # when & then
        original_cl.effect[3] = '0'
        assert Effect('101###1#') == copied_cl.effect
        assert Effect('10#0##1#') == original_cl.effect
コード例 #10
0
    def test_should_detect_correct_anticipation_1(self, cfg):
        # Classifier is not predicting any change, all pass-through effect
        # should predict correctly

        # given
        cls = Classifier(effect=Effect('########'), cfg=cfg)
        p0 = Perception('00001111')
        p1 = Perception('00001111')

        # then
        assert cls.does_anticipate_correctly(p0, p1) is True
コード例 #11
0
    def test_should_detect_correct_anticipation_6(self, cfg):
        # Case when effect predicts situation incorrectly

        # given
        cls = Classifier(effect=Effect(
            ['#', '#', '1', '#', '0', '#', '0', '#']),
                         cfg=cfg)
        p0 = Perception(['0', '0', '0', '1', '1', '0', '1', '0'])
        p1 = Perception(['0', '0', '1', '1', '0', '0', '0', '0'])

        # then
        assert cls.does_anticipate_correctly(p0, p1) is True
コード例 #12
0
ファイル: test_Effect.py プロジェクト: mk5135795/pyalcs
    def test_update_equivalence(self):
        # given (note that the effects are practically equivalent)
        perception = Perception("1101")
        effect_a = Effect(
            ({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2}, "1", "1"))
        effect_b = Effect(({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2},
                           {"1": 1.0, "0": 0.0}, {"1": 1.0, "0": 0.0}))

        # when
        effect_a.update_enhanced_effect_probs(perception, 0.6)
        effect_b.update_enhanced_effect_probs(perception, 0.6)

        # then
        assert effect_a == effect_b
コード例 #13
0
ファイル: test_Effect.py プロジェクト: mk5135795/pyalcs
 def test_eq(self):
     assert Effect('00001111') == Effect('00001111')
     assert Effect('00001111') != Effect('0000111#')
     assert Effect(({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2},
                    {"1": 1.0, "0": 0.0}, {"1": 1.0, "0": 0.0})) \
         == Effect(({"0": 0.4, "1": 0.6}, {"1": 0.2, "0": 0.8},
                   {"0": 0.0, "1": 1.0}, {"0": 0.0, "1": 1.0}))
     # Note that for probability-enhanced attributes, they are
     # considered "equal" when the algorithms are concerned, if
     # only they have the same symbols, no matter their probabilities
     assert Effect(({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2},
                    {"1": 1.0, "0": 0.0}, {"1": 1.0, "0": 0.0})) \
         == Effect(({"0": 0.4, "1": 0.6}, {"1": 0.3, "0": 0.7},
                   {"0": 0.0, "1": 1.0}, {"0": 0.0, "1": 1.0}))
コード例 #14
0
    def test_should_handle_pass_through_symbol(self, cfg):
        # A case when there was no change in perception but effect has no
        # pass-through symbol

        # given
        cls = Classifier(effect=Effect(
            ['#', '0', '#', '#', '#', '#', '#', '#']),
                         cfg=cfg)
        p0 = Perception(['0', '0', '0', '0', '1', '1', '1', '1'])
        p1 = Perception(['0', '0', '0', '0', '1', '1', '1', '1'])

        # then
        assert cls.does_anticipate_correctly(p0, p1) is False
コード例 #15
0
    def test_should_detect_correct_anticipation_2(self, cfg):
        # Introduce two changes into situation and effect (should
        # also predict correctly)

        # given
        cls = Classifier(effect=Effect(
            ['#', '1', '#', '#', '#', '#', '0', '#']),
                         cfg=cfg)
        p0 = Perception(['0', '0', '0', '0', '1', '1', '1', '1'])
        p1 = Perception(['0', '1', '0', '0', '1', '1', '0', '1'])

        # then
        assert cls.does_anticipate_correctly(p0, p1) is True
コード例 #16
0
    def test_should_handle_unexpected_case_1(self, cfg):
        # given
        cls = Classifier(action=2, cfg=cfg)

        p0 = Perception('01100000')
        p1 = Perception('10100010')
        time = 14

        new_cls = unexpected_case(cls, p0, p1, time)

        # Quality should be decreased
        assert 0.475 == cls.q

        # Should be marked with previous perception
        for mark_attrib in cls.mark:
            assert 1 == len(mark_attrib)

        assert '0' in cls.mark[0]
        assert '1' in cls.mark[1]
        assert '1' in cls.mark[2]
        assert '0' in cls.mark[3]
        assert '0' in cls.mark[4]
        assert '0' in cls.mark[5]
        assert '0' in cls.mark[6]
        assert '0' in cls.mark[7]

        # New classifier should not be the same object
        assert cls is not new_cls

        # Check attributes of a new classifier
        assert Condition('01####0#') == new_cls.condition
        assert 2 == new_cls.action
        assert Effect('10####1#') == new_cls.effect

        # There should be no mark
        for mark_attrib in new_cls.mark:
            assert 0 == len(mark_attrib)

        assert 0.5 == new_cls.q
        assert cls.r == new_cls.r
        assert time == new_cls.tga
        assert time == new_cls.talp
コード例 #17
0
    def test_should_create_new_classifier_using_covering(self, cfg):
        # given
        action = random.randint(0, cfg.number_of_possible_actions)
        time = random.randint(0, 1000)
        p0 = Perception('01001101')
        p1 = Perception('00011111')

        # when
        new_cl = cover(p0, action, p1, time, cfg)

        # then
        assert new_cl.condition == Condition('#1#0##0#')
        assert new_cl.action == action
        assert new_cl.effect == Effect('#0#1##1#')
        assert new_cl.q == .5
        assert new_cl.r == 0
        assert new_cl.ir == 0
        assert new_cl.tav == 0
        assert new_cl.tga == time
        assert new_cl.talp == time
        assert new_cl.num == 1
        assert new_cl.exp == 0
コード例 #18
0
    def test_should_handle_unexpected_case_5(self, cfg):
        # given
        cls = Classifier(condition='00####1#',
                         action=2,
                         effect='########',
                         quality=0.129,
                         reward=341.967,
                         immediate_reward=130.369,
                         experience=201,
                         tga=129,
                         talp=9628,
                         tav=25.08,
                         cfg=cfg)
        cls.mark[2].add('2')
        cls.mark[3].add('1')
        cls.mark[4].add('1')
        cls.mark[5].add('0')
        cls.mark[7].add('0')

        p0 = Perception('00211010')
        p1 = Perception('00001110')
        time = 9628

        # when
        new_cls = unexpected_case(cls, p0, p1, time)

        # then
        assert new_cls is not None
        assert Condition('0021#01#') == new_cls.condition
        assert Effect('##00#1##') == new_cls.effect
        assert abs(0.5 - new_cls.q) < 0.1
        assert abs(341.967 - new_cls.r) < 0.1
        assert abs(130.369 - new_cls.ir) < 0.1
        assert abs(25.08 - new_cls.tav) < 0.1
        assert 1 == new_cls.exp
        assert 1 == new_cls.num
        assert time == new_cls.tga
        assert time == new_cls.talp
コード例 #19
0
    def test_should_handle_unexpected_case_6(self, cfg):
        # given
        cls = Classifier(condition='0#1####1',
                         action=2,
                         effect='1#0####0',
                         quality=0.38505,
                         reward=1.20898,
                         immediate_reward=0,
                         experience=11,
                         tga=95,
                         talp=873,
                         tav=71.3967,
                         cfg=cfg)
        cls.mark[1].update(['1'])
        cls.mark[3].update(['1'])
        cls.mark[4].update(['0', '1'])
        cls.mark[5].update(['1'])
        cls.mark[6].update(['0', '1'])

        p0 = Perception('01111101')
        p1 = Perception('11011110')
        time = 873

        # when
        new_cls = unexpected_case(cls, p0, p1, time)

        # then
        assert new_cls is not None
        assert Condition('0#1###01') == new_cls.condition
        assert Effect('1#0###10') == new_cls.effect
        assert abs(0.5 - new_cls.q) < 0.1
        assert abs(1.20898 - new_cls.r) < 0.1
        assert abs(0 - new_cls.ir) < 0.1
        assert abs(71.3967 - new_cls.tav) < 0.1
        assert 1 == new_cls.exp
        assert 1 == new_cls.num
        assert time == new_cls.tga
        assert time == new_cls.talp
コード例 #20
0
ファイル: test_Effect.py プロジェクト: mk5135795/pyalcs
    def test_enhanced(self):
        # given
        effect = Effect(({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2}, "1", "1"))

        # then
        assert effect.is_enhanced()
コード例 #21
0
ファイル: test_Effect.py プロジェクト: edebie/pyalcs
 def test_should_initialize_correctly(self):
     effect = Effect.empty(8)
     assert 8 == len(effect)
コード例 #22
0
ファイル: test_Effect.py プロジェクト: edebie/pyalcs
 def test_should_detect_change(self, _e, _result):
     assert Effect(_e).specify_change == _result
コード例 #23
0
ファイル: test_Effect.py プロジェクト: edebie/pyalcs
    def test_should_set_effect_with_non_string_char(self):
        effect = Effect.empty(8)

        with pytest.raises(TypeError):
            effect[0] = 1
コード例 #24
0
ファイル: test_Effect.py プロジェクト: edebie/pyalcs
 def test_eq(self):
     assert Effect('00001111') == Effect('00001111')
     assert Effect('00001111') != Effect('0000111#')
コード例 #25
0
ファイル: test_Effect.py プロジェクト: edebie/pyalcs
 def test_should_get_initialized_with_string(self):
     effect = Effect("#1O##O##")
     assert 8 == len(effect)
コード例 #26
0
ファイル: test_Effect.py プロジェクト: mk5135795/pyalcs
    def test_reduced_to_non_enhanced(self):
        # given
        effect = Effect(({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2}, "1", "1"))

        # then
        assert effect.reduced_to_non_enhanced() == Effect("1011")
コード例 #27
0
ファイル: test_Effect.py プロジェクト: mk5135795/pyalcs
    def test_not_enhanced(self):
        # given
        effect = Effect(("1", "0", "1", "1"))

        # then
        assert not effect.is_enhanced()
コード例 #28
0
    def test_should_return_number_of_specific_components_2(self):
        effect = Effect.empty(8)
        effect[1] = '1'

        assert 1 == effect.number_of_specified_elements
コード例 #29
0
 def test_should_return_number_of_specific_components_1(self):
     effect = Effect.empty(8)
     assert 0 == effect.number_of_specified_elements
コード例 #30
0
ファイル: test_Effect.py プロジェクト: mk5135795/pyalcs
    def test_str(self):
        # given
        effect = Effect(({"1": 0.6, "0": 0.4}, {"0": 0.8, "1": 0.2}, "1", "1"))

        # then
        assert str(effect) == "{10}{01}11"