AVG_HR_FILE = './data/results/avg_hr.txt' PARA_FILE = './data/results/para.txt' # def main(): print '===========Start Time===========' print time.strftime('%Y-%m-%d %A %X', time.localtime(time.time())) print '================================' readFile = pd.read_csv(FILE, iterator=True, chunksize=1000, na_values='') points = pd.concat(readFile, ignore_index=True) points = np.array(points, dtype=None) loc = np.array(points[:, 9:11], dtype=float) if not os.path.isfile(DIC_FILE): dic = ldaAdd.dic(DIC_FILE, points) else: dic = ldaAdd.readDic(DIC_FILE) """1st layer""" labels, cluster_centers, n_clusters_, ms = msAdd.ms1st(0.015, loc) print("number of estimated clusters in 1st layer: %d" % n_clusters_) zeros = [0] * len(points) #1st layer label points = np.hstack((points, np.transpose([labels, zeros]))) #drawGmap.drawLayer(labels, cluster_centers, n_clusters_, loc, 1) """2nd layer""" labels2, cluster_centers2, n_clusters_2, ms2 = msAdd.ms2nd(BW_FILE, loc) print("number of estimated clusters in 2nd layer: %d" % n_clusters_2) points[:, -1] = labels2 labelsNew = ms.predict(cluster_centers2) #landmark's new clus
RUNT_FILE = './data/results/runtime.txt' # def main(): print '===========Start Time===========' print time.strftime('%Y-%m-%d %A %X',time.localtime(time.time())) print '================================' readFile = pd.read_csv(FILE, iterator=True, chunksize=1000, na_values = '') points = pd.concat(readFile, ignore_index=True) points = np.array(points, dtype=None) loc = np.array(points[:,9:11],dtype=float) if not os.path.isfile(DIC_FILE): dic = ldaAdd.dic(DIC_FILE, points) else: dic = ldaAdd.readDic(DIC_FILE) """1st layer""" labels, cluster_centers, n_clusters_, ms = msAdd.ms1st(0.015, loc) print("number of estimated clusters in 1st layer: %d" % n_clusters_) zeros = [0]*len(points) #1st layer label points = np.hstack((points, np.transpose([labels,zeros]) )) #drawGmap.drawLayer(labels, cluster_centers, n_clusters_, loc, 1) """2nd layer""" labels2, cluster_centers2, n_clusters_2, ms2 = msAdd.ms2nd(BW_FILE, loc)