コード例 #1
0
def solve_spherical_model(case_index, lb, ub):
    state_p0 = CASES[case_index - 1][0]
    state_e0 = CASES[case_index - 1][1]

    try:
        opt_individual, opt_value, time_cost = ldope.spherical_solve_fcn(
            state_p0, state_e0, lb, ub)
    except:
        print('exception!')
    else:
        print(opt_individual)
        print(opt_value)
        print(time_cost)

        costate_p0, costate_e0, tf_norm = \
            ldope.spherical_individual_convert_fcn(opt_individual)

        step = 0.05
        t_span = 0, tf_norm
        t_eval = np.arange(0, tf_norm, step)
        t_eval = np.append(t_eval, tf_norm)

        file_name = './data/spherical/{}.data'.format(case_index)

        with open(file_name, 'a') as data:
            data.write('{} '.format(opt_value))
            data.write('{} '.format(time_cost))
            for ele in opt_individual:
                data.write('{} '.format(ele))
            data.write('\n')
コード例 #2
0
def plot_spherical_trajectory(case_index,
                              individual,
                              ax,
                              norm=True,
                              p_color=seaborn.xkcd_rgb['red'],
                              e_color=seaborn.xkcd_rgb['green'],
                              p_linestyle='-',
                              e_linestyle='--',
                              p_label='Trajectory P in SM',
                              e_label='Trajectory E in SM',
                              side='both'):
    # 初始状态量
    state_p0 = solve_spherical_model.CASES[case_index - 1][0]
    state_e0 = solve_spherical_model.CASES[case_index - 1][1]
    if norm:
        state_p0 = ldope.spherical_state_norm_fcn(state_p0)
        state_e0 = ldope.spherical_state_norm_fcn(state_e0)

    # 初始协态量
    costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn(
        individual)

    # 积分时段
    if (norm):
        step = 0.05
        t_span = 0, tf_norm
        t_eval = np.arange(0, tf_norm, step)
        t_eval = np.append(t_eval, tf_norm)
    else:
        step = 0.05 * ldope.TU
        t_span = 0, tf_norm * ldope.TU
        t_eval = np.arange(0, tf_norm * ldope.TU, step)
        t_eval = np.append(t_eval, tf_norm * ldope.TU)

    # 积分
    result = solve_ivp(
        lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), norm),
        t_span=np.array(t_span),
        y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0),
        t_eval=t_eval)

    # 绘制向量计算
    xp, yp, zp = [], [], []
    xe, ye, ze = [], [], []
    for each_state in result.y.T:
        r_p, r_e = each_state[0], each_state[6]
        xi_p, xi_e = each_state[3], each_state[9]
        phi_p, phi_e = each_state[4], each_state[10]
        xp.append(r_p * cos(phi_p) * cos(xi_p))
        yp.append(r_p * cos(phi_p) * sin(xi_p))
        zp.append(r_p * sin(phi_p))
        xe.append(r_e * cos(phi_e) * cos(xi_e))
        ye.append(r_e * cos(phi_e) * sin(xi_e))
        ze.append(r_e * sin(phi_e))

    # 绘制
    if side == 'both' or side == 'p':
        ax.plot(xp,
                yp,
                zp,
                color=p_color,
                linestyle=p_linestyle,
                label=p_label)
    if side == 'both' or side == 'e':
        ax.plot(xe,
                ye,
                ze,
                color=e_color,
                linestyle=e_linestyle,
                label=e_label)
コード例 #3
0
def plot_same_control(case_index,
                      individual,
                      control_case_index,
                      control_individual,
                      ax,
                      p_o_color=seaborn.xkcd_rgb['red'],
                      p_o_linestyle='-',
                      p_o_label='P origin',
                      e_o_color=seaborn.xkcd_rgb['green'],
                      e_o_linestyle='--',
                      e_o_label='E origin',
                      p_color=seaborn.xkcd_rgb['purple'],
                      p_linestyle='-.',
                      p_label='P',
                      e_color=seaborn.xkcd_rgb['blue'],
                      e_linestyle=':',
                      e_label='E'):
    # 控制初始状态量
    state_control_p0 = solve_spherical_model.CASES[control_case_index - 1][0]
    state_control_e0 = solve_spherical_model.CASES[control_case_index - 1][1]
    state_control_p0 = ldope.spherical_state_norm_fcn(state_control_p0)
    state_control_e0 = ldope.spherical_state_norm_fcn(state_control_e0)

    # 控制初始协态量
    costate_control_p0, costate_control_e0, tf_control_norm = \
        ldope.spherical_individual_convert_fcn(control_individual)

    # 控制积分时段
    step_control = 0.05
    t_span_control = 0, tf_control_norm
    t_eval_control = np.arange(0, tf_control_norm, step_control)
    t_eval_control = np.append(t_eval_control, tf_control_norm)

    # 积分
    result_control = solve_ivp(
        lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True),
        t_span=np.array(t_span_control),
        y0=np.array(state_control_p0 + state_control_e0 + costate_control_p0 +
                    costate_control_e0),
        t_eval=t_eval_control)

    # 控制向量计算
    t_line = []
    alpha_p, alpha_e = [], []
    beta_p, beta_e = [], []
    for i, t in enumerate(result_control.t):
        t_line.append(t)
        each_state = result_control.y.T[i]
        control_p = ldope.spherical_control_fcn(each_state[0:6],
                                                each_state[12:18], 'p')
        alpha_p.append(control_p[0] if control_p[0] > -2 else control_p[0] +
                       2 * pi)
        beta_p.append(control_p[1] if control_p[1] > 1 else control_p[1] +
                      2 * pi)

        control_e = ldope.spherical_control_fcn(each_state[6:12],
                                                each_state[18:24], 'e')
        alpha_e.append(control_e[0])
        beta_e.append(control_e[1])

    alpha_p_fcn = interp1d(t_line, alpha_p, kind='cubic')
    beta_p_fcn = interp1d(t_line, beta_p, kind='cubic')

    alpha_e_fcn = interp1d(t_line, alpha_e, kind='cubic')
    beta_e_fcn = interp1d(t_line, beta_e, kind='cubic')

    def state_p_fcn(t, y: np.ndarray):
        return ldope.spherical_state_fcn(tuple(y.tolist()),
                                         (alpha_p_fcn(t), beta_p_fcn(t)),
                                         side='p',
                                         norm=True)

    def state_e_fcn(t, y: np.ndarray):
        return ldope.spherical_state_fcn(tuple(y.tolist()),
                                         (alpha_e_fcn(t), beta_e_fcn(t)),
                                         side='e',
                                         norm=True)

    # 初始状态量
    state_p0 = solve_spherical_model.CASES[case_index - 1][0]
    state_e0 = solve_spherical_model.CASES[case_index - 1][1]
    state_p0 = ldope.spherical_state_norm_fcn(state_p0)
    state_e0 = ldope.spherical_state_norm_fcn(state_e0)

    # 初始协态量
    costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn(
        individual)

    # 积分时段
    step = 0.05
    t_span = 0, tf_norm
    t_eval = np.arange(0, tf_norm, step)
    t_eval = np.append(t_eval, tf_norm)

    print(tf_control_norm)
    print(tf_norm)

    # 积分
    result_o = solve_ivp(
        lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True),
        t_span=np.array(t_span),
        y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0),
        t_eval=t_eval)
    result_p = solve_ivp(state_p_fcn,
                         t_span=np.array(t_span),
                         y0=np.array(state_p0),
                         t_eval=t_eval)
    result_e = solve_ivp(state_e_fcn,
                         t_span=np.array(t_span),
                         y0=np.array(state_e0),
                         t_eval=t_eval)

    # 绘制向量计算
    xp_o, yp_o, zp_o = [], [], []
    xe_o, ye_o, ze_o = [], [], []
    for each_state in result_o.y.T:
        r_p, r_e = each_state[0], each_state[6]
        xi_p, xi_e = each_state[3], each_state[9]
        phi_p, phi_e = each_state[4], each_state[10]
        xp_o.append(r_p * cos(phi_p) * cos(xi_p))
        yp_o.append(r_p * cos(phi_p) * sin(xi_p))
        zp_o.append(r_p * sin(phi_p))
        xe_o.append(r_e * cos(phi_e) * cos(xi_e))
        ye_o.append(r_e * cos(phi_e) * sin(xi_e))
        ze_o.append(r_e * sin(phi_e))

    xp, yp, zp = [], [], []
    for each_state in result_p.y.T:
        r_p = each_state[0]
        xi_p = each_state[3]
        phi_p = each_state[4]
        xp.append(r_p * cos(phi_p) * cos(xi_p))
        yp.append(r_p * cos(phi_p) * sin(xi_p))
        zp.append(r_p * sin(phi_p))

    xe, ye, ze = [], [], []
    for each_state in result_e.y.T:
        r_e = each_state[0]
        xi_e = each_state[3]
        phi_e = each_state[4]
        xe.append(r_e * cos(phi_e) * cos(xi_e))
        ye.append(r_e * cos(phi_e) * sin(xi_e))
        ze.append(r_e * sin(phi_e))

    # 绘制
    ax.plot(xp_o,
            yp_o,
            zp_o,
            color=p_o_color,
            linestyle=p_o_linestyle,
            label=p_o_label)
    ax.plot(xe_o,
            ye_o,
            ze_o,
            color=e_o_color,
            linestyle=e_o_linestyle,
            label=e_o_label)
    ax.plot(xp, yp, zp, color=p_color, linestyle=p_linestyle, label=p_label)
    ax.plot(xe_o,
            ye_o,
            ze_o,
            color=e_color,
            linestyle=e_linestyle,
            label=e_label)
コード例 #4
0
def plot_spherical_txi(case_index,
                       individual,
                       ax_p,
                       ax_e,
                       p_color=seaborn.xkcd_rgb['red'],
                       p_linestyle='-',
                       p_label=r'Pursuer t vs. $\xi$',
                       e_color=seaborn.xkcd_rgb['green'],
                       e_linestyle='--',
                       e_label=r'Evader t vs. $\xi$',
                       p_base_xi=0,
                       e_base_xi=0):
    # 初始状态量
    state_p0 = solve_spherical_model.CASES[case_index - 1][0]
    state_e0 = solve_spherical_model.CASES[case_index - 1][1]
    state_p0 = ldope.spherical_state_norm_fcn(state_p0)
    state_e0 = ldope.spherical_state_norm_fcn(state_e0)

    # 初始协态量
    costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn(
        individual)

    # 积分时段
    step = 0.05
    t_span = 0, tf_norm
    t_eval = np.arange(0, tf_norm, step)
    t_eval = np.append(t_eval, tf_norm)

    # 积分
    result = solve_ivp(
        lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True),
        t_span=np.array(t_span),
        y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0),
        t_eval=t_eval)

    # 绘制向量计算
    t_line = []
    xi_p_line = []
    xi_e_line = []
    for i, t in enumerate(result.t):
        t_line.append(t)
        each_state = result.y.T[i]
        r_p, r_e = each_state[0], each_state[6]
        xi_p, xi_e = each_state[3], each_state[9]
        phi_p, phi_e = each_state[4], each_state[10]
        xp = r_p * cos(phi_p) * cos(xi_p)
        yp = r_p * cos(phi_p) * sin(xi_p)
        zp = r_p * sin(phi_p)
        xe = r_e * cos(phi_e) * cos(xi_e)
        ye = r_e * cos(phi_e) * sin(xi_e)
        ze = r_e * sin(phi_e)

        xi_p_line.append(xi_p)
        xi_e_line.append(xi_e)

    # 绘制
    ax_p.semilogx(t_line,
                  np.array(xi_p_line[:]) - p_base_xi,
                  basex=2,
                  color=p_color,
                  linestyle=p_linestyle,
                  label=p_label)
    ax_e.semilogx(t_line,
                  np.array(xi_p_line[:]) - e_base_xi,
                  basex=2,
                  color=e_color,
                  linestyle=e_linestyle,
                  label=e_label)
コード例 #5
0
def plot_spherical_td(case_index,
                      individual,
                      ax,
                      norm=True,
                      color=seaborn.xkcd_rgb['red'],
                      linestyle='-',
                      label='t vs. D'):
    # 初始状态量
    state_p0 = solve_spherical_model.CASES[case_index - 1][0]
    state_e0 = solve_spherical_model.CASES[case_index - 1][1]
    if norm:
        state_p0 = ldope.spherical_state_norm_fcn(state_p0)
        state_e0 = ldope.spherical_state_norm_fcn(state_e0)

    # 初始协态量
    costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn(
        individual)

    # 积分时段
    if norm:
        step = 0.05
        t_span = 0, tf_norm
        t_eval = np.arange(0, tf_norm, step)
        t_eval = np.append(t_eval, tf_norm)
    else:
        step = 0.05 * ldope.TU
        t_span = 0, tf_norm * ldope.TU
        t_eval = np.arange(0, tf_norm * ldope.TU, step)
        t_eval = np.append(t_eval, tf_norm * ldope.TU)

    # 积分
    result = solve_ivp(
        lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), norm),
        t_span=np.array(t_span),
        y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0),
        t_eval=t_eval)

    # 绘制向量计算
    r = []
    t_line = []
    for i, t in enumerate(result.t):
        if norm:
            t_line.append(t)
        else:
            t_line.append(t / ldope.TU)
        each_state = result.y.T[i]
        r_p, r_e = each_state[0], each_state[6]
        xi_p, xi_e = each_state[3], each_state[9]
        phi_p, phi_e = each_state[4], each_state[10]
        xp = r_p * cos(phi_p) * cos(xi_p)
        yp = r_p * cos(phi_p) * sin(xi_p)
        zp = r_p * sin(phi_p)
        xe = r_e * cos(phi_e) * cos(xi_e)
        ye = r_e * cos(phi_e) * sin(xi_e)
        ze = r_e * sin(phi_e)
        r.append(sqrt((xp - xe)**2 + (yp - ye)**2 + (zp - ze)**2))

    # 绘制
    ax.plot(t_line, r, color=color, linestyle=linestyle, label=label)

    ax.scatter(t_line[-1], r[-1], color=color, marker='*')
コード例 #6
0
def plot_spherical_control(case_index,
                           individual,
                           ax_control_alpha_p,
                           ax_control_alpha_e,
                           ax_control_beta_p,
                           ax_control_beta_e,
                           p_color=seaborn.xkcd_rgb['red'],
                           e_color=seaborn.xkcd_rgb['green'],
                           p_linestyle='-',
                           e_linestyle='--'):
    # 初始状态量
    state_p0 = solve_spherical_model.CASES[case_index - 1][0]
    state_e0 = solve_spherical_model.CASES[case_index - 1][1]
    state_p0 = ldope.spherical_state_norm_fcn(state_p0)
    state_e0 = ldope.spherical_state_norm_fcn(state_e0)

    # 初始协态量
    costate_p0, costate_e0, tf_norm = ldope.spherical_individual_convert_fcn(
        individual)

    # 积分时段
    step = 0.05
    t_span = 0, tf_norm
    t_eval = np.arange(0, tf_norm, step)
    t_eval = np.append(t_eval, tf_norm)

    # 积分
    result = solve_ivp(
        lambda t, y: ldope.spherical_ext_state_fcn(tuple(y.tolist()), True),
        t_span=np.array(t_span),
        y0=np.array(state_p0 + state_e0 + costate_p0 + costate_e0),
        t_eval=t_eval)

    # 绘制向量计算
    t_line = []
    alpha_p, alpha_e = [], []
    beta_p, beta_e = [], []
    for i, t in enumerate(result.t):
        each_state = result.y.T[i]
        t_line.append(t)
        control_p = ldope.spherical_control_fcn(each_state[0:6],
                                                each_state[12:18], 'p')
        alpha_p.append(control_p[0])
        beta_p.append(control_p[1])

        control_e = ldope.spherical_control_fcn(each_state[6:12],
                                                each_state[18:24], 'e')
        alpha_e.append(control_e[0])
        beta_e.append(control_e[1])

    # 绘制
    ax_control_alpha_p.plot(t_line,
                            alpha_p,
                            color=p_color,
                            linestyle=p_linestyle,
                            label=r'$\hat{\alpha}_P$')
    ax_control_alpha_p.set_ylabel(ax_control_alpha_p.get_ylabel() + ' ' +
                                  r'$\hat{\alpha}_P$')

    ax_control_alpha_e.plot(t_line,
                            alpha_e,
                            color=e_color,
                            linestyle=e_linestyle,
                            label=r'$\hat{\alpha}_E$')
    ax_control_alpha_e.set_ylabel(ax_control_alpha_e.get_ylabel() + ' ' +
                                  r'$\hat{\alpha}_E$')

    ax_control_beta_p.plot(t_line,
                           beta_p,
                           color=p_color,
                           linestyle=p_linestyle,
                           label=r'$\hat{\beta}_P$')
    ax_control_beta_p.set_ylabel(ax_control_beta_p.get_ylabel() + ' ' +
                                 r'$\hat{\beta}_P$')

    ax_control_beta_e.plot(t_line,
                           beta_e,
                           color=e_color,
                           linestyle=e_linestyle,
                           label=r'$\hat{\beta}_E$')
    ax_control_beta_e.set_ylabel(ax_control_beta_e.get_ylabel() + ' ' +
                                 r'$\hat{\beta}_E$')