def main(): if len(sys.argv)==1: print ('ERROR: No options provided.\n') parser.print_help(sys.stderr) sys.exit(1) parameters = parser.parse_args() p_dict= vars(parameters) if p_dict['debug']: print ('Parsed parameters:') print(p_dict) action = p_dict['ldpred_action'] if action=='coord': coord_genotypes.main(p_dict) elif action=='gibbs': LDpred_gibbs.main(p_dict) elif action=='inf': LDpred_inf.main(p_dict) elif action=='p+t': LD_pruning_thres.main(p_dict) elif action=='score': validate.main(p_dict) elif action=='ldfile': ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr'],wallaceld=True) elif action=='all': pass
def main(p_dict): #Check parameters summary_dict = {} summary_dict[0]={'name':'Coordinated data filename','value':p_dict['cf']} summary_dict[0.1]={'name':'SNP weights output file (prefix)', 'value':p_dict['out']} summary_dict[0.2]={'name':'LD data filename (prefix)', 'value':p_dict['ldf']} summary_dict[1]={'name':'LD radius used','value':str(p_dict['ldr'])} t0 = time.time() summary_dict[1.09]={'name':'dash', 'value':'LD information'} ld_dict = ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr'], verbose=p_dict['debug'], compressed=not p_dict['no_ld_compression'], use_hickle=p_dict['hickle_ld'], summary_dict=summary_dict) t1 = time.time() t = (t1 - t0) summary_dict[1.2]={'name':'Running time for calculating LD information:','value':'%d min and %0.2f secs'% (t / 60, t % 60)} t0 = time.time() summary_dict[1.9]={'name':'dash', 'value':'LDpred Gibbs sampler'} ldpred_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ps=p_dict['f'], ld_radius=p_dict['ldr'], ld_dict=ld_dict, n=p_dict['N'], num_iter=p_dict['n_iter'], burn_in=p_dict['n_burn_in'], h2=p_dict['h2'], use_gw_h2=p_dict['use_gw_h2'], verbose=p_dict['debug'], summary_dict=summary_dict) t1 = time.time() t = (t1 - t0) summary_dict[2.2]={'name':'Running time for Gibbs sampler(s):','value':'%d min and %0.2f secs'% (t / 60, t % 60)} reporting.print_summary(summary_dict, 'Summary of LDpred Gibbs')
def main(p_dict): ld_dict = ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr']) ldpred_inf_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ld_radius=p_dict['ldr'], ld_dict=ld_dict, n=p_dict['N'], h2=p_dict['h2'], verbose=p_dict['debug'])
def main(p_dict): ld_dict = ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr'], verbose=p_dict['debug'], compressed=not p_dict['no_ld_compression'], use_hickle=p_dict['hickle_ld'], summary_dict={}) ldpred_inf_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ld_radius=p_dict['ldr'], ld_dict=ld_dict, n=p_dict['N'], h2=p_dict['h2'], verbose=p_dict['debug'])
def main(p_dict): # need change to fix chr by chr. ld_dict = ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr']) # ldpred_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ps=p_dict['f'], ld_radius=p_dict['ldr'], # ld_dict=ld_dict, n=p_dict['N'], num_iter=p_dict['n_iter'], burn_in=p_dict['n_burn_in'], # h2=p_dict['h2'], verbose=p_dict['debug']) ldpred_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ps=p_dict['f'], ld_radius=p_dict['ldr'], ld_dict=ld_dict, n=p_dict['N'], num_iter=p_dict['n_iter'], burn_in=p_dict['n_burn_in'], h2=p_dict['h2'], verbose=p_dict['debug'], local_ld_file_prefix=p_dict['ldf'], scipyInverse=p_dict['scipy'])
def main(p_dict): summary_dict = {} summary_dict[0]={'name':'Coordinated data filename','value':p_dict['cf']} summary_dict[0.1]={'name':'SNP weights output file (prefix)', 'value':p_dict['out']} summary_dict[0.2]={'name':'LD data filename (prefix)', 'value':p_dict['ldf']} summary_dict[1]={'name':'LD radius used','value':str(p_dict['ldr'])} t0 = time.time() summary_dict[1.09]={'name':'dash', 'value':'LD information'} ld_dict = ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr'], verbose=p_dict['debug'], compressed=not p_dict['no_ld_compression'], use_hickle=p_dict['hickle_ld'], summary_dict=summary_dict) t1 = time.time() t = (t1 - t0) summary_dict[1.2]={'name':'Running time for calculating LD information:','value':'%d min and %0.2f secs'% (t / 60, t % 60)} t0 = time.time() summary_dict[1.9]={'name':'dash', 'value':'LDpred Gibbs sampler'} ldpred_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ps=p_dict['f'], ld_radius=p_dict['ldr'], ld_dict=ld_dict, n=p_dict['N'], num_iter=p_dict['n_iter'], burn_in=p_dict['n_burn_in'], h2=p_dict['h2'], verbose=p_dict['debug'], summary_dict=summary_dict) t1 = time.time() t = (t1 - t0) summary_dict[2.2]={'name':'Running time for Gibbs sampler(s):','value':'%d min and %0.2f secs'% (t / 60, t % 60)} reporting.print_summary(summary_dict, 'Summary of LDpred Gibbs')
def main(p_dict): ld_dict = ld.get_ld_dict(p_dict['cf'], p_dict['ldf'], p_dict['ldr'], verbose=p_dict['debug'], compressed=not p_dict['no_ld_compression'], use_hickle=p_dict['hickle_ld'], summary_dict={}) ldpred_inf_genomewide(data_file=p_dict['cf'], out_file_prefix=p_dict['out'], ld_radius=p_dict['ldr'], ld_dict = ld_dict, n=p_dict['N'], h2=p_dict['h2'], verbose=p_dict['debug'])