コード例 #1
0
def test_remove_brackets():
    x = ' [] [] asdf [] '
    nose.tools.assert_equal(reg.remove_brackets(x), 'asdf')
コード例 #2
0
ファイル: ldsc.py プロジェクト: Chris1221/ldsc
def ldscore(args, log):
    '''
    Wrapper function for estimating l1, l1^2, l2 and l4 (+ optionally standard errors) from
    reference panel genotypes.

    Annot format is
    chr snp bp cm <annotations>

    '''

    if args.bfile:
        snp_file, snp_obj = args.bfile+'.bim', ps.PlinkBIMFile
        ind_file, ind_obj = args.bfile+'.fam', ps.PlinkFAMFile
        array_file, array_obj = args.bfile+'.bed', ld.PlinkBEDFile

    # read bim/snp
    array_snps = snp_obj(snp_file)
    m = len(array_snps.IDList)
    log.log('Read list of {m} SNPs from {f}'.format(m=m, f=snp_file))
    if args.annot is not None:  # read --annot
        try:
            annot = ps.AnnotFile(args.annot)
            n_annot, ma = len(annot.df.columns) - 4, len(annot.df)
            log.log("Read {A} annotations for {M} SNPs from {f}".format(f=args.annot,
                A=n_annot, M=ma))
            annot_matrix = np.array(annot.df.iloc[:,4:])
            annot_colnames = annot.df.columns[4:]
            keep_snps = None
            if np.any(annot.df.SNP.values != array_snps.df.SNP.values):
                raise ValueError('The .annot file must contain the same SNPs in the same'+\
                    ' order as the .bim file.')
        except Exception:
            log.log('Error parsing .annot file')
            raise

    elif args.extract is not None:  # --extract
        keep_snps = __filter__(args.extract, 'SNPs', 'include', array_snps)
        annot_matrix, annot_colnames, n_annot = None, None, 1


    elif args.cts_bin is not None and args.cts_breaks is not None:  # --cts-bin
        cts_fnames = sumstats._splitp(args.cts_bin)  # read filenames
        args.cts_breaks = args.cts_breaks.replace('N','-')  # replace N with negative sign
        try:  # split on x
            breaks = [[float(x) for x in y.split(',')] for y in args.cts_breaks.split('x')]
        except ValueError as e:
            raise ValueError('--cts-breaks must be a comma-separated list of numbers: '
                +str(e.args))

        if len(breaks) != len(cts_fnames):
            raise ValueError('Need to specify one set of breaks for each file in --cts-bin.')

        if args.cts_names:
            cts_colnames = [str(x) for x in args.cts_names.split(',')]
            if len(cts_colnames) != len(cts_fnames):
                msg = 'Must specify either no --cts-names or one value for each file in --cts-bin.'
                raise ValueError(msg)

        else:
            cts_colnames = ['ANNOT'+str(i) for i in xrange(len(cts_fnames))]

        log.log('Reading numbers with which to bin SNPs from {F}'.format(F=args.cts_bin))

        cts_levs = []
        full_labs = []
        for i,fh in enumerate(cts_fnames):
            vec = ps.read_cts(cts_fnames[i], array_snps.df.SNP.values)

            max_cts = np.max(vec)
            min_cts = np.min(vec)
            cut_breaks = list(breaks[i])
            name_breaks = list(cut_breaks)
            if np.all(cut_breaks >= max_cts) or np.all(cut_breaks <= min_cts):
                raise ValueError('All breaks lie outside the range of the cts variable.')

            if np.all(cut_breaks <= max_cts):
                name_breaks.append(max_cts)
                cut_breaks.append(max_cts+1)

            if np.all(cut_breaks >= min_cts):
                name_breaks.append(min_cts)
                cut_breaks.append(min_cts-1)

            name_breaks.sort()
            cut_breaks.sort()
            n_breaks = len(cut_breaks)
            # so that col names are consistent across chromosomes with different max vals
            name_breaks[0] = 'min'
            name_breaks[-1] = 'max'
            name_breaks = [str(x) for x in name_breaks]
            labs = [name_breaks[i]+'_'+name_breaks[i+1] for i in xrange(n_breaks-1)]
            cut_vec = pd.Series(pd.cut(vec, bins=cut_breaks, labels=labs))
            cts_levs.append(cut_vec)
            full_labs.append(labs)

        annot_matrix = pd.concat(cts_levs, axis=1)
        annot_matrix.columns = cts_colnames
        # crosstab -- for now we keep empty columns
        annot_matrix = pd.crosstab(annot_matrix.index,
            [annot_matrix[i] for i in annot_matrix.columns], dropna=False,
            colnames=annot_matrix.columns)

        # add missing columns
        if len(cts_colnames) > 1:
            for x in product(*full_labs):
                if x not in annot_matrix.columns:
                    annot_matrix[x] = 0
        else:
            for x in full_labs[0]:
                if x not in annot_matrix.columns:
                    annot_matrix[x] = 0

        annot_matrix = annot_matrix[sorted(annot_matrix.columns, key=annot_sort_key)]
        if len(cts_colnames) > 1:
            # flatten multi-index
            annot_colnames = ['_'.join([cts_colnames[i]+'_'+b for i,b in enumerate(c)])
                for c in annot_matrix.columns]
        else:
            annot_colnames = [cts_colnames[0]+'_'+b for b in annot_matrix.columns]

        annot_matrix = np.matrix(annot_matrix)
        keep_snps = None
        n_annot = len(annot_colnames)
        if np.any(np.sum(annot_matrix, axis=1) == 0):
            # This exception should never be raised. For debugging only.
            raise ValueError('Some SNPs have no annotation in --cts-bin. This is a bug!')

    else:
        annot_matrix, annot_colnames, keep_snps = None, None, None,
        n_annot = 1

    # read fam
    array_indivs = ind_obj(ind_file)
    n = len(array_indivs.IDList)
    log.log('Read list of {n} individuals from {f}'.format(n=n, f=ind_file))
    # read keep_indivs
    if args.keep:
        keep_indivs = __filter__(args.keep, 'individuals', 'include', array_indivs)
    else:
        keep_indivs = None

    # read genotype array
    log.log('Reading genotypes from {fname}'.format(fname=array_file))
    geno_array = array_obj(array_file, n, array_snps, keep_snps=keep_snps,
        keep_indivs=keep_indivs, mafMin=args.maf)

    # filter annot_matrix down to only SNPs passing MAF cutoffs
    if annot_matrix is not None:
        annot_keep = geno_array.kept_snps
        annot_matrix = annot_matrix[annot_keep,:]

    # determine block widths
    x = np.array((args.ld_wind_snps, args.ld_wind_kb, args.ld_wind_cm), dtype=bool)
    if np.sum(x) != 1:
        raise ValueError('Must specify exactly one --ld-wind option')

    if args.ld_wind_snps:
        max_dist = args.ld_wind_snps
        coords = np.array(xrange(geno_array.m))
    elif args.ld_wind_kb:
        max_dist = args.ld_wind_kb*1000
        coords = np.array(array_snps.df['BP'])[geno_array.kept_snps]
    elif args.ld_wind_cm:
        max_dist = args.ld_wind_cm
        coords = np.array(array_snps.df['CM'])[geno_array.kept_snps]

    block_left = ld.getBlockLefts(coords, max_dist)
    if block_left[len(block_left)-1] == 0 and not args.yes_really:
        error_msg = 'Do you really want to compute whole-chomosome LD Score? If so, set the '
        error_msg += '--yes-really flag (warning: it will use a lot of time / memory)'
        raise ValueError(error_msg)

    scale_suffix = ''
    if args.pq_exp is not None:
        log.log('Computing LD with pq ^ {S}.'.format(S=args.pq_exp))
        msg = 'Note that LD Scores with pq raised to a nonzero power are'
        msg += 'not directly comparable to normal LD Scores.'
        log.log(msg)
        scale_suffix = '_S{S}'.format(S=args.pq_exp)
        pq = np.matrix(geno_array.maf*(1-geno_array.maf)).reshape((geno_array.m, 1))
        pq = np.power(pq, args.pq_exp)

        if annot_matrix is not None:
            annot_matrix = np.multiply(annot_matrix, pq)
        else:
            annot_matrix = pq

    log.log("Estimating LD Score.")
    lN = geno_array.ldScoreVarBlocks(block_left, args.chunk_size, annot=annot_matrix)
    col_prefix = "L2"; file_suffix = "l2"

    if n_annot == 1:
        ldscore_colnames = [col_prefix+scale_suffix]
    else:
        ldscore_colnames =  [y+col_prefix+scale_suffix for y in annot_colnames]

    # print .ldscore. Output columns: CHR, BP, RS, [LD Scores]
    out_fname = args.out + '.' + file_suffix + '.ldscore'
    new_colnames = geno_array.colnames + ldscore_colnames
    df = pd.DataFrame.from_records(np.c_[geno_array.df, lN])
    df.columns = new_colnames
    if args.print_snps:
        if args.print_snps.endswith('gz'):
            print_snps = pd.read_csv(args.print_snps, header=None, compression='gzip')
        elif args.print_snps.endswith('bz2'):
            print_snps = pd.read_csv(args.print_snps, header=None, compression='bz2')
        else:
            print_snps = pd.read_csv(args.print_snps, header=None)
        if len(print_snps.columns) > 1:
            raise ValueError('--print-snps must refer to a file with a one column of SNP IDs.')
        log.log('Reading list of {N} SNPs for which to print LD Scores from {F}'.format(\
                        F=args.print_snps, N=len(print_snps)))

        print_snps.columns=['SNP']
        df = df.ix[df.SNP.isin(print_snps.SNP),:]
        if len(df) == 0:
            raise ValueError('After merging with --print-snps, no SNPs remain.')
        else:
            msg = 'After merging with --print-snps, LD Scores for {N} SNPs will be printed.'
            log.log(msg.format(N=len(df)))

    l2_suffix = '.gz'
    log.log("Writing LD Scores for {N} SNPs to {f}.gz".format(f=out_fname, N=len(df)))
    df.drop(['CM','MAF'], axis=1).to_csv(out_fname, sep="\t", header=True, index=False,
        float_format='%.3f')
    call(['gzip', '-f', out_fname])
    if annot_matrix is not None:
        M = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix, axis=0))))
        ii = geno_array.maf > 0.05
        M_5_50 = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix[ii,:], axis=0))))
    else:
        M = [geno_array.m]
        M_5_50 = [np.sum(geno_array.maf > 0.05)]

    # print .M
    fout_M = open(args.out + '.'+ file_suffix +'.M','wb')
    print >>fout_M, '\t'.join(map(str,M))
    fout_M.close()

    # print .M_5_50
    fout_M_5_50 = open(args.out + '.'+ file_suffix +'.M_5_50','wb')
    print >>fout_M_5_50, '\t'.join(map(str,M_5_50))
    fout_M_5_50.close()

    # print annot matrix
    if (args.cts_bin is not None) and not args.no_print_annot:
        out_fname_annot = args.out + '.annot'
        new_colnames = geno_array.colnames + ldscore_colnames
        annot_df = pd.DataFrame(np.c_[geno_array.df, annot_matrix])
        annot_df.columns = new_colnames
        del annot_df['MAF']
        log.log("Writing annot matrix produced by --cts-bin to {F}".format(F=out_fname+'.gz'))
        annot_df.to_csv(out_fname_annot, sep="\t", header=True, index=False)
        call(['gzip', '-f', out_fname_annot])

    # print LD Score summary
    pd.set_option('display.max_rows', 200)
    log.log('\nSummary of LD Scores in {F}'.format(F=out_fname+l2_suffix))
    t = df.ix[:,4:].describe()
    log.log( t.ix[1:,:] )

    np.seterr(divide='ignore', invalid='ignore')  # print NaN instead of weird errors
    # print correlation matrix including all LD Scores and sample MAF
    log.log('')
    log.log('MAF/LD Score Correlation Matrix')
    log.log( df.ix[:,4:].corr() )

    # print condition number
    if n_annot > 1: # condition number of a column vector w/ nonzero var is trivially one
        log.log('\nLD Score Matrix Condition Number')
        cond_num = np.linalg.cond(df.ix[:,5:])
        log.log( reg.remove_brackets(str(np.matrix(cond_num))) )
        if cond_num > 10000:
            log.log('WARNING: ill-conditioned LD Score Matrix!')

    # summarize annot matrix if there is one
    if annot_matrix is not None:
        # covariance matrix
        x = pd.DataFrame(annot_matrix, columns=annot_colnames)
        log.log('\nAnnotation Correlation Matrix')
        log.log( x.corr() )

        # column sums
        log.log('\nAnnotation Matrix Column Sums')
        log.log(_remove_dtype(x.sum(axis=0)))

        # row sums
        log.log('\nSummary of Annotation Matrix Row Sums')
        row_sums = x.sum(axis=1).describe()
        log.log(_remove_dtype(row_sums))

    np.seterr(divide='raise', invalid='raise')
コード例 #3
0
def ldscore(args, log):
    '''
    Wrapper function for estimating l1, l1^2, l2 and l4 (+ optionally standard errors) from
    reference panel genotypes.

    Annot format is
    chr snp bp cm <annotations>

    '''

    if args.bfile:
        snp_file, snp_obj = args.bfile + '.bim', ps.PlinkBIMFile
        ind_file, ind_obj = args.bfile + '.fam', ps.PlinkFAMFile
        array_file, array_obj = args.bfile + '.bed', ld.PlinkBEDFile

    # read bim/snp
    array_snps = snp_obj(snp_file)
    m = len(array_snps.IDList)
    log.log('Read list of {m} SNPs from {f}'.format(m=m, f=snp_file))
    if args.annot is not None:  # read --annot
        try:
            if args.thin_annot:  # annot file has only annotations
                annot = ps.ThinAnnotFile(args.annot)
                n_annot, ma = len(annot.df.columns), len(annot.df)
                log.log("Read {A} annotations for {M} SNPs from {f}".format(
                    f=args.annot, A=n_annot, M=ma))
                annot_matrix = annot.df.values
                annot_colnames = annot.df.columns
                keep_snps = None
            else:
                annot = ps.AnnotFile(args.annot)
                n_annot, ma = len(annot.df.columns) - 4, len(annot.df)
                log.log("Read {A} annotations for {M} SNPs from {f}".format(
                    f=args.annot, A=n_annot, M=ma))
                annot_matrix = np.array(annot.df.iloc[:, 4:])
                annot_colnames = annot.df.columns[4:]
                keep_snps = None
                if np.any(annot.df.SNP.values != array_snps.df.SNP.values):
                    raise ValueError('The .annot file must contain the same SNPs in the same'+\
                        ' order as the .bim file.')
        except Exception:
            log.log('Error parsing .annot file')
            raise

    elif args.extract is not None:  # --extract
        keep_snps = __filter__(args.extract, 'SNPs', 'include', array_snps)
        annot_matrix, annot_colnames, n_annot = None, None, 1

    elif args.cts_bin is not None and args.cts_breaks is not None:  # --cts-bin
        cts_fnames = sumstats._splitp(args.cts_bin)  # read filenames
        args.cts_breaks = args.cts_breaks.replace(
            'N', '-')  # replace N with negative sign
        try:  # split on x
            breaks = [[float(x) for x in y.split(',')]
                      for y in args.cts_breaks.split('x')]
        except ValueError as e:
            raise ValueError(
                '--cts-breaks must be a comma-separated list of numbers: ' +
                str(e.args))

        if len(breaks) != len(cts_fnames):
            raise ValueError(
                'Need to specify one set of breaks for each file in --cts-bin.'
            )

        if args.cts_names:
            cts_colnames = [str(x) for x in args.cts_names.split(',')]
            if len(cts_colnames) != len(cts_fnames):
                msg = 'Must specify either no --cts-names or one value for each file in --cts-bin.'
                raise ValueError(msg)

        else:
            cts_colnames = ['ANNOT' + str(i) for i in xrange(len(cts_fnames))]

        log.log('Reading numbers with which to bin SNPs from {F}'.format(
            F=args.cts_bin))

        cts_levs = []
        full_labs = []
        for i, fh in enumerate(cts_fnames):
            vec = ps.read_cts(cts_fnames[i], array_snps.df.SNP.values)

            max_cts = np.max(vec)
            min_cts = np.min(vec)
            cut_breaks = list(breaks[i])
            name_breaks = list(cut_breaks)
            if np.all(cut_breaks >= max_cts) or np.all(cut_breaks <= min_cts):
                raise ValueError(
                    'All breaks lie outside the range of the cts variable.')

            if np.all(cut_breaks <= max_cts):
                name_breaks.append(max_cts)
                cut_breaks.append(max_cts + 1)

            if np.all(cut_breaks >= min_cts):
                name_breaks.append(min_cts)
                cut_breaks.append(min_cts - 1)

            name_breaks.sort()
            cut_breaks.sort()
            n_breaks = len(cut_breaks)
            # so that col names are consistent across chromosomes with different max vals
            name_breaks[0] = 'min'
            name_breaks[-1] = 'max'
            name_breaks = [str(x) for x in name_breaks]
            labs = [
                name_breaks[i] + '_' + name_breaks[i + 1]
                for i in xrange(n_breaks - 1)
            ]
            cut_vec = pd.Series(pd.cut(vec, bins=cut_breaks, labels=labs))
            cts_levs.append(cut_vec)
            full_labs.append(labs)

        annot_matrix = pd.concat(cts_levs, axis=1)
        annot_matrix.columns = cts_colnames
        # crosstab -- for now we keep empty columns
        annot_matrix = pd.crosstab(
            annot_matrix.index,
            [annot_matrix[i] for i in annot_matrix.columns],
            dropna=False,
            colnames=annot_matrix.columns)

        # add missing columns
        if len(cts_colnames) > 1:
            for x in product(*full_labs):
                if x not in annot_matrix.columns:
                    annot_matrix[x] = 0
        else:
            for x in full_labs[0]:
                if x not in annot_matrix.columns:
                    annot_matrix[x] = 0

        annot_matrix = annot_matrix[sorted(annot_matrix.columns,
                                           key=annot_sort_key)]
        if len(cts_colnames) > 1:
            # flatten multi-index
            annot_colnames = [
                '_'.join([cts_colnames[i] + '_' + b for i, b in enumerate(c)])
                for c in annot_matrix.columns
            ]
        else:
            annot_colnames = [
                cts_colnames[0] + '_' + b for b in annot_matrix.columns
            ]

        annot_matrix = np.matrix(annot_matrix)
        keep_snps = None
        n_annot = len(annot_colnames)
        if np.any(np.sum(annot_matrix, axis=1) == 0):
            # This exception should never be raised. For debugging only.
            raise ValueError(
                'Some SNPs have no annotation in --cts-bin. This is a bug!')

    else:
        annot_matrix, annot_colnames, keep_snps = None, None, None,
        n_annot = 1

    # read fam
    array_indivs = ind_obj(ind_file)
    n = len(array_indivs.IDList)
    log.log('Read list of {n} individuals from {f}'.format(n=n, f=ind_file))
    # read keep_indivs
    if args.keep:
        keep_indivs = __filter__(args.keep, 'individuals', 'include',
                                 array_indivs)
    else:
        keep_indivs = None

    # read genotype array
    log.log('Reading genotypes from {fname}'.format(fname=array_file))
    geno_array = array_obj(array_file,
                           n,
                           array_snps,
                           keep_snps=keep_snps,
                           keep_indivs=keep_indivs,
                           mafMin=args.maf)

    # filter annot_matrix down to only SNPs passing MAF cutoffs
    if annot_matrix is not None:
        annot_keep = geno_array.kept_snps
        annot_matrix = annot_matrix[annot_keep, :]

    # determine block widths
    x = np.array((args.ld_wind_snps, args.ld_wind_kb, args.ld_wind_cm),
                 dtype=bool)
    if np.sum(x) != 1:
        raise ValueError('Must specify exactly one --ld-wind option')

    if args.ld_wind_snps:
        max_dist = args.ld_wind_snps
        coords = np.array(xrange(geno_array.m))
    elif args.ld_wind_kb:
        max_dist = args.ld_wind_kb * 1000
        coords = np.array(array_snps.df['BP'])[geno_array.kept_snps]
    elif args.ld_wind_cm:
        max_dist = args.ld_wind_cm
        coords = np.array(array_snps.df['CM'])[geno_array.kept_snps]

    block_left = ld.getBlockLefts(coords, max_dist)
    if block_left[len(block_left) - 1] == 0 and not args.yes_really:
        error_msg = 'Do you really want to compute whole-chomosome LD Score? If so, set the '
        error_msg += '--yes-really flag (warning: it will use a lot of time / memory)'
        raise ValueError(error_msg)

    scale_suffix = ''
    if args.pq_exp is not None:
        log.log('Computing LD with pq ^ {S}.'.format(S=args.pq_exp))
        msg = 'Note that LD Scores with pq raised to a nonzero power are'
        msg += 'not directly comparable to normal LD Scores.'
        log.log(msg)
        scale_suffix = '_S{S}'.format(S=args.pq_exp)
        pq = np.matrix(geno_array.maf * (1 - geno_array.maf)).reshape(
            (geno_array.m, 1))
        pq = np.power(pq, args.pq_exp)

        if annot_matrix is not None:
            annot_matrix = np.multiply(annot_matrix, pq)
        else:
            annot_matrix = pq

    log.log("Estimating LD Score.")
    lN = geno_array.ldScoreVarBlocks(block_left,
                                     args.chunk_size,
                                     annot=annot_matrix)
    col_prefix = "L2"
    file_suffix = "l2"

    if n_annot == 1:
        ldscore_colnames = [col_prefix + scale_suffix]
    else:
        ldscore_colnames = [
            y + col_prefix + scale_suffix for y in annot_colnames
        ]

    # print .ldscore. Output columns: CHR, BP, RS, [LD Scores]
    out_fname = args.out + '.' + file_suffix + '.ldscore'
    new_colnames = geno_array.colnames + ldscore_colnames
    df = pd.DataFrame.from_records(np.c_[geno_array.df, lN])
    df.columns = new_colnames
    if args.print_snps:
        if args.print_snps.endswith('gz'):
            print_snps = pd.read_csv(args.print_snps,
                                     header=None,
                                     compression='gzip')
        elif args.print_snps.endswith('bz2'):
            print_snps = pd.read_csv(args.print_snps,
                                     header=None,
                                     compression='bz2')
        else:
            print_snps = pd.read_csv(args.print_snps, header=None)
        if len(print_snps.columns) > 1:
            raise ValueError(
                '--print-snps must refer to a file with a one column of SNP IDs.'
            )
        log.log('Reading list of {N} SNPs for which to print LD Scores from {F}'.format(\
                        F=args.print_snps, N=len(print_snps)))

        print_snps.columns = ['SNP']
        df = df.ix[df.SNP.isin(print_snps.SNP), :]
        if len(df) == 0:
            raise ValueError(
                'After merging with --print-snps, no SNPs remain.')
        else:
            msg = 'After merging with --print-snps, LD Scores for {N} SNPs will be printed.'
            log.log(msg.format(N=len(df)))

    l2_suffix = '.gz'
    log.log("Writing LD Scores for {N} SNPs to {f}.gz".format(f=out_fname,
                                                              N=len(df)))
    df.drop(['CM', 'MAF'], axis=1).to_csv(out_fname,
                                          sep="\t",
                                          header=True,
                                          index=False,
                                          float_format='%.3f')
    call(['gzip', '-f', out_fname])
    if annot_matrix is not None:
        M = np.atleast_1d(np.squeeze(np.asarray(np.sum(annot_matrix, axis=0))))
        ii = geno_array.maf > 0.05
        M_5_50 = np.atleast_1d(
            np.squeeze(np.asarray(np.sum(annot_matrix[ii, :], axis=0))))
    else:
        M = [geno_array.m]
        M_5_50 = [np.sum(geno_array.maf > 0.05)]

    # print .M
    fout_M = open(args.out + '.' + file_suffix + '.M', 'wb')
    print >> fout_M, '\t'.join(map(str, M))
    fout_M.close()

    # print .M_5_50
    fout_M_5_50 = open(args.out + '.' + file_suffix + '.M_5_50', 'wb')
    print >> fout_M_5_50, '\t'.join(map(str, M_5_50))
    fout_M_5_50.close()

    # print annot matrix
    if (args.cts_bin is not None) and not args.no_print_annot:
        out_fname_annot = args.out + '.annot'
        new_colnames = geno_array.colnames + ldscore_colnames
        annot_df = pd.DataFrame(np.c_[geno_array.df, annot_matrix])
        annot_df.columns = new_colnames
        del annot_df['MAF']
        log.log("Writing annot matrix produced by --cts-bin to {F}".format(
            F=out_fname + '.gz'))
        annot_df.to_csv(out_fname_annot, sep="\t", header=True, index=False)
        call(['gzip', '-f', out_fname_annot])

    # print LD Score summary
    pd.set_option('display.max_rows', 200)
    log.log('\nSummary of LD Scores in {F}'.format(F=out_fname + l2_suffix))
    t = df.ix[:, 4:].describe()
    log.log(t.ix[1:, :])

    np.seterr(divide='ignore',
              invalid='ignore')  # print NaN instead of weird errors
    # print correlation matrix including all LD Scores and sample MAF
    log.log('')
    log.log('MAF/LD Score Correlation Matrix')
    log.log(df.ix[:, 4:].corr())

    # print condition number
    if n_annot > 1:  # condition number of a column vector w/ nonzero var is trivially one
        log.log('\nLD Score Matrix Condition Number')
        cond_num = np.linalg.cond(df.ix[:, 5:])
        log.log(reg.remove_brackets(str(np.matrix(cond_num))))
        if cond_num > 10000:
            log.log('WARNING: ill-conditioned LD Score Matrix!')

    # summarize annot matrix if there is one
    if annot_matrix is not None:
        # covariance matrix
        x = pd.DataFrame(annot_matrix, columns=annot_colnames)
        log.log('\nAnnotation Correlation Matrix')
        log.log(x.corr())

        # column sums
        log.log('\nAnnotation Matrix Column Sums')
        log.log(_remove_dtype(x.sum(axis=0)))

        # row sums
        log.log('\nSummary of Annotation Matrix Row Sums')
        row_sums = x.sum(axis=1).describe()
        log.log(_remove_dtype(row_sums))

    np.seterr(divide='raise', invalid='raise')
コード例 #4
0
ファイル: test_regressions.py プロジェクト: Chris1221/ldsc
def test_remove_brackets():
    x = ' [] [] asdf [] '
    nose.tools.assert_equal(reg.remove_brackets(x), 'asdf')